C-5
 CYPRESS

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

How to Check the Ordering Part Number

1. Go to www.cypress.com/pcn.
2. Enter the keyword (for example, ordering part number) in the SEARCH PCNS field and click Apply.
3. Click the corresponding title from the search results.
4. Download the Affected Parts List file, which has details of all changes

For More Information
Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

PSR LED Driver IC for LED Lighting

Description

MB39C604 is a Primary Side Regulation (PSR) LED driver IC for LED lighting. Using the information of the primary peak current and the transformer-energy-zero time, it is able to deliver a well regulated current to the secondary side without using an opto-coupler in an isolated flyback topology. Operating in critical conduction mode, a smaller transformer is required. In addition, MB39C604 has a built-in dimmable circuit and can constitute the lighting system for PWM dimming.
It is most suitable for the general lighting applications, for example replacement of commercial and residential incandescent lamps.

```
Features
⿴PSR topology in an isolated flyback circuit
■High power factor (>0.9 : Not dimming) in Single Conversion
■High efficiency (>85% : Not dimming) and low EMI by detecting transformer zero energy
⿴PWM Dimmable LED lighting
■Highly reliable protection functions
    \squareUnder voltage lock out (UVLO)
    \squareOver voltage protection (OVP)
    \squareOver current protection (OCP)
    \square Short circuit protection (SCP)
    \squareOver temperature protection (OTP)
@Switching frequency setting : 30 kHz to 133 kHz
■Input voltage range VDD : 9V to 20V
■Input voltage for LED lighting applications : AC110V RMS, AC230V RMS
■Output power range for LED lighting applications:5W to 50W
■Small Package : SOP-8 (3.9 mm x 5.05 mm × 1.75 mm[Max])
```


Applications

-LED lighting
■PWM dimmable LED lighting

Note: This product supports the web-based design simulation tool, Easy DesignSim.
It can easily select external components and can display useful information.
Please access from http://cypress.transim.com/login.aspx

Contents

Description 1
Features 1
Applications 1

1. Pin Assignment 3
2. Pin Descriptions 3
3. Block Diagram 4
4. Absolute Maximum Ratings 5
5. Recommended Operating Conditions 6
6. Electrical Characteristics 7
7. Standard Characteristics. 9
8. Function Explanations 10
8.1 LED Current Control by PSR (Primary Side Regulation) 10
8.2 PFC (Power Factor Correction) Function 11
8.3 Dimming Function 11
8.4 Power-On Sequence 12
8.5 Power-Off Sequence 13
8.6 IP_PEak Detection Function 13
8.7 Zero Voltage Switching Function 13
8.8 Protection Functions 14
9. I/O Pin Equivalent Circuit Diagram 15
10. Application Examples 17
10.1 50W Isolated and PWM Dimming Application 17
10.2 5W Non-Isolated and Non-Dimming Application 23
11. Usage Precautions 28
12. RoHS Compliance Information 28
13. Ordering Information 28
14. Package Dimensions 29
15. Major Changes 30
Document History. 31
Sales, Solutions, and Legal Information 32

1. Pin Assignment

Figure 1. Pin Assignment

2. Pin Descriptions

Table 1. Pin Descriptions

Pin No.	Pin Name	I/O	Description
1	VDD	-	Power supply pin.
2	TZE	I	Transformer Zero Energy detecting pin.
3	COMP	O	External Capacitor connection pin for the compensation.
4	DIM	I	Dimming control pin.
5	ADJ	O	Pin for adjusting the switch-on timing.
6	CS	I	Pin for detecting peak current of transformer primary winding.
7	GND	-	Ground pin.
8	DRV	O	External MOSFET gate connection pin.

3. Block Diagram

Figure 2. Block Diagram (Isolated Flyback Application)

4. Absolute Maximum Ratings

Table 2. Absolute Maximum Rating

Parameter	Symbol	Condition	Rating		Unit
			Min	Max	
Power Supply Voltage	$\mathrm{V}_{\text {VDD }}$	VDD pin	-0.3	+25	V
Input Voltage	$\mathrm{V}_{\text {cs }}$	CS pin	-0.3	+6.0	V
	$\mathrm{V}_{\text {TZE }}$	TZE pin	-0.3	+6.0	V
	$V_{\text {DIM }}$	DIM pin	-0.3	+6.0	V
Output Voltage	V ${ }_{\text {dRV }}$	DRV pin	-0.3	+25	V
Output Current	$I_{\text {ADJ }}$	ADJ pin	-1	-	mA
	IDRV	DRV pin DC level	-50	+50	mA
Power Dissipation	PD	$\mathrm{Ta} \leq+25^{\circ} \mathrm{C}$	-	800 (*1)	mW
Storage temperature	$\mathrm{T}_{\text {STG }}$	-	-55	+125	${ }^{\circ} \mathrm{C}$
ESD Voltage 1	$\mathrm{V}_{\text {ESDH }}$	Human Body Model	-2000	+2000	V
ESD Voltage 2	$\mathrm{V}_{\text {ESDC }}$	Charged Device Model	-1000	+1000	V

*1: The value when using two layers PCB.
Reference: $\theta \mathrm{ja}$ (wind speed $0 \mathrm{~m} / \mathrm{s}$): $125^{\circ} \mathrm{C} / \mathrm{W}$

Figure 3. Power Dissipation

WARNING:

1. Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

5. Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Parameter	Symbol	Condition	Value			Unit
			Min	Tур	Max	
VDD pin Input Voltage	VDD	VDD pin	9	-	20	V
DIM pin Input Voltage	$\mathrm{V}_{\text {DIM }}$	DIM pin After UVLO release	0	-	5	V
DIM pin Input Current	$\mathrm{I}_{\text {DIM }}$	DIM pin Before UVLO release	0	-	2.5	$\mu \mathrm{A}$
TZE pin Resistance	$\mathrm{R}_{\text {TZE }}$	TZE pin	50	-	200	$k \Omega$
ADJ pin Resistance	$\mathrm{R}_{\text {ADJ }}$	ADJ pin	9.3	-	185.5	$k \Omega$
COMP pin Capacitance	$\mathrm{C}_{\text {COMP }}$	COMP pin	-	4.7	-	$\mu \mathrm{F}$
VDD pin Capacitance	C_{BP}	Set between VDD pin and GND pin	-	100	-	$\mu \mathrm{F}$
Operating Junction Temperature	Tj	-	-40	-	+125	${ }^{\circ} \mathrm{C}$

WARNING:

1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
2. Any use of semiconductor devices will be under their recommended operating condition.
3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.
4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

6. Electrical Characteristics

Table 4. Electrical Characteristics
$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{VDD}}=12 \mathrm{~V}\right)$

Parameter		Symbol	Pin	Condition	Value			Unit	
		Min			Typ	Max			
UVLO	UVLO Turn-on threshold voltage		$\mathrm{V}_{\text {TH }}$	VDD	-	12.25	13	13.75	V
	UVLO Turn-off threshold voltage	$V_{\text {TL }}$	VDD	-	7.55	7.9	8.5	V	
	Startup current	$I_{\text {Start }}$	VDD	$\mathrm{V}_{\mathrm{VDD}}=7 \mathrm{~V}$	-	65	160	$\mu \mathrm{A}$	
TRANSFORMER ZERO ENERGY DETECTION	Zero energy threshold voltage	$\mathrm{V}_{\text {TZETL }}$	TZE	TZE = "H" to "L"	-	20	-	mV	
	Zero energy threshold voltage	$\mathrm{V}_{\text {TZETH }}$	TZE	TZE = "L" to "H"	0.6	0.7	0.8	V	
	TZE clamp voltage	$\mathrm{V}_{\text {TZECLAMP }}$	TZE	$\mathrm{I}_{\text {TZE }}=-10 \mu \mathrm{~A}$	-200	-160	-100	mV	
	OVP threshold voltage	$\mathrm{V}_{\text {TZEOVP }}$	TZE	-	4.15	4.3	4.45	V	
	OVP blanking time	tovpblank	TZE	-	0.6	1	1.7	$\mu \mathrm{s}$	
	TZE input current	$\mathrm{I}_{\text {tze }}$	TZE	$\mathrm{V}_{\text {TZE }}=5 \mathrm{~V}$	-1	-	+1	$\mu \mathrm{A}$	
COMPENSATION	Source current	$I_{\text {so }}$	COMP	$\begin{aligned} & \mathrm{V}_{\text {COMP }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {DIM }}=1.85 \mathrm{~V} \end{aligned}$	-	-27	-	$\mu \mathrm{A}$	
	Trans conductance	gm	COMP	$\mathrm{V}_{\text {comp }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {cS }}=1 \mathrm{~V}$	-	96	-	$\mu \mathrm{A} / \mathrm{V}$	
ADJUSTMENT	ADJ voltage	$V_{\text {ADJ }}$	ADJ	-	1.81	1.85	1.89	V	
	ADJ source current	$I_{\text {ADJ }}$	ADJ	$V_{\text {ADJ }}=0 \mathrm{~V}$	-650	-450	-250	$\mu \mathrm{A}$	
	ADJ time	$\mathrm{T}_{\text {ADJ }}$	$\begin{aligned} & \text { TZE } \\ & \text { DRV } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\text {ADJ }}\left(\mathrm{R}_{\text {ADJ }}=51 \mathrm{k} \Omega\right) \\ & -\mathrm{T}_{\text {ADJ }}\left(\mathrm{R}_{\text {ADJ }}=9.1 \mathrm{k} \Omega\right) \end{aligned}$	490	550	610	ns	
	Minimum switching period	$\mathrm{T}_{\text {sw }}$	$\begin{aligned} & \text { TZE } \\ & \text { DRV } \end{aligned}$	-	6.75	7.5	8.25	$\mu \mathrm{s}$	
CURRENT SENSE	OCP threshold voltage	$V_{\text {OCPTH }}$	CS	-	1.9	2	2.1	V	
	OCP delay time	tocpoly	CS	-	-	400	500	ns	
	CS input current	Ics	CS	$\mathrm{V}_{\mathrm{cs}}=5 \mathrm{~V}$	-1	-	+1	$\mu \mathrm{A}$	

$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{VDD}}=12 \mathrm{~V}\right)$

Parameter		Symbol	Pin	Condition	Value			Unit	
		Min			Typ	Max			
DRV	DRV high voltage		$V_{\text {DRVH }}$	DRV	$V D D=18 \mathrm{~V}, \mathrm{I}_{\mathrm{DRV}}=-30 \mathrm{~mA}$	7.6	9.4	-	V
	DRV low voltage	$V_{\text {DRVL }}$	DRV	$\mathrm{VDD}=18 \mathrm{~V}, \mathrm{I}_{\mathrm{DRV}}=30 \mathrm{~mA}$	-	130	260	mV	
	Rise time	$\mathrm{t}_{\text {RISE }}$	DRV	$\begin{aligned} & \text { VDD }=18 \mathrm{~V}, \\ & \text { CLOAD }=1 \mathrm{nF} \end{aligned}$	-	94	-	ns	
	Fall time	$\mathrm{t}_{\text {fall }}$	DRV	$\begin{aligned} & \text { VDD }=18 \mathrm{~V}, \\ & \text { CLOAD }=1 \mathrm{nF} \end{aligned}$	-	16	-	ns	
	Minimum on time	$\mathrm{t}_{\text {ONmin }}$	DRV	TZE trigger	300	500	700	ns	
	Maximum on time	tonmax	DRV	-	27	44	60	$\mu \mathrm{s}$	
	Minimum off time	$\mathrm{t}_{\text {OFFMIN }}$	DRV	-	1	1.5	1.93	$\mu \mathrm{s}$	
	Maximum off time	$\mathrm{t}_{\text {OFFmax }}$	DRV	TZE $=$ GND	270	320	370	$\mu \mathrm{s}$	
OTP	OTP threshold	Tотр	-	Tj , temperature rising	-	150	-	${ }^{\circ} \mathrm{C}$	
	OTP hysteresis	Totphys	-	Tj , temperature falling, degrees below $\mathrm{T}_{\text {отр }}$	-	25	-	${ }^{\circ} \mathrm{C}$	
DIMMING	DIM input current	$\mathrm{I}_{\text {IIM }}$	DIM	$\mathrm{V}_{\text {DIM }}=5 \mathrm{~V}$	-0.1	-	+0.1	$\mu \mathrm{A}$	
	DIMCMP threshold voltage	$V_{\text {dimcmpvth }}$	DIM	-	135	150	165	mV	
	DIMCMP hysteresis	$\mathrm{V}_{\text {dimcmphys }}$	DIM	-	-	70	-	mV	
POWER SUPPLY CURRENT	Power supply current	$\mathrm{I}_{\text {vdd(Static) }}$	VDD	$V_{V D D}=20 \mathrm{~V}, \mathrm{~V}_{\text {TZE }}=1 \mathrm{~V}$	-	3	3.6	mA	
		$I_{\text {vdd (operating) }}$	VDD	$\begin{aligned} & \mathrm{V}_{\mathrm{vDD}}=20 \mathrm{~V}, \mathrm{Qg}=20 \mathrm{nC}, \\ & \mathrm{f}_{\mathrm{sw}}=133 \mathrm{kHz} \end{aligned}$	-	5.6	-	mA	

7. Standard Characteristics

Figure 4. Standard Characteristics

8. Function Explanations

8.1 LED Current Control by PSR (Primary Side Regulation)

MB39C604 regulates the average LED current (lled by feeding back the information based on Primary Winding peak current (Ip_PEAK) and Secondary Winding energy discharge time ($\mathrm{T}_{\mathrm{DIS}}$) and switching period (T_{Sw}). Figure 5 shows the operating waveform in steady state. I_{P} is Primary Winding current and I_{S} is Secondary Winding current. $I_{\text {LED }}$ as an average current of the Secondary Winding is described by the following equation.

$$
\mathrm{I}_{\text {LED }}=\frac{1}{2} \times \mathrm{I}_{\mathrm{S}_{-} \text {PEAK }} \times \frac{\mathrm{TDIS}}{\mathrm{TSW}}
$$

Using Ip_PEAK and the transformer Secondary to Primary turns ratio ($\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}}$), Secondary Winding peak current (Is_PEAK) is described by the following equation.

$$
I_{s_{-} P E A K}=\frac{N_{p}}{N_{s}} \times I_{P_{-} P E A K}
$$

Therefore,

$$
\mathrm{I}_{\text {LED }}=\frac{1}{2} \times \frac{\mathrm{NP}}{\mathrm{Ns}} \times \mathrm{I}_{\text {P_PEAK }} \times \frac{\mathrm{TDIS}}{\mathrm{Tsw}}
$$

MB39C604 detects $T_{\text {DIS }}$ by monitoring the TZE pin and IP_PEAK by monitoring the CS pin and then controls ILED. An internal Err Amp sinks gm current proportional to $I_{\text {P_PEAK }}$ from the COMP pin during $\mathrm{T}_{\text {DIS }}$ period. In steady state, since the average of the gm current is equal to internal reference current (I_{so}), the voltage on the COMP pin ($\mathrm{V}_{\text {comp }}$) is nearly constant.

$$
\mathrm{I}_{\text {P_PEAK }} \times \mathrm{R}_{\mathrm{CS}} \times \mathrm{gm} \times \mathrm{T}_{\mathrm{DIS}}=\mathrm{I}_{\mathrm{SO}} \times \mathrm{T}_{\mathrm{SW}}
$$

In above equation, gm is transconductance of the Err Amp and R_{cs} is a sense resistance.
Eventually, $I_{\text {LED }}$ can be calculated by the following equation.

$$
\mathrm{I}_{\mathrm{LED}}=\frac{1}{2} \times \frac{\mathrm{N}_{\mathrm{p}}}{N_{\mathrm{s}}} \times \frac{\mathrm{I}_{\mathrm{so}}}{\mathrm{gm}} \times \frac{1}{R_{\mathrm{cs}}}
$$

Figure 5. LED Current Control Waveform

8.2 PFC (Power Factor Correction) Function

Switching on time ($\mathrm{T}_{\text {ON }}$) is generated by comparing $\mathrm{V}_{\text {Cомp }}$ with an internal sawtooth waveform (refer to Figure 2). Since $\mathrm{V}_{\text {comp }}$ is slow varying with connecting an external capacitor (C сомр $^{\text {) from the COMP pin to the GND pin, } T_{\text {on }} \text { is nearly constant within an AC }}$ line cycle. In this state, $I_{\text {P_PEAK }}$ is nearly proportional to the AC Line voltage ($\mathrm{V}_{\text {BULK }}$). It can bring the phase differences between the input voltage and the input current close to zero, so that high Power Factor can be achieved.

8.3 Dimming Function

MB39C604 has the built-in dimmable circuit to control ILED by changing a reference of Err Amp based on the input voltage level on the DIM pin ($\mathrm{V}_{\mathrm{DIM}}$), and realizes dimming. Figure 6 shows $\mathrm{I}_{\text {LED }}$ dimming ratio based on $\mathrm{V}_{\text {DIM }}$.
Figure 7 shows the input circuit to the DIM pin for PWM dimming. PWM signal is divided and filtered into an analog voltage with RC network. It is possible to configurate PWM dimmable system by inputting the voltage to the DIM pin.

Figure 6. Dimming Curve

Figure 7. DIM Pin Input Circuit

8.4 Power-On Sequence

When the $A C$ line voltage is supplied, $\mathrm{V}_{\text {BULK }}$ is powered from the AC line through a diode bridge, and the VDD pin is charged from $\mathrm{V}_{\text {BuLk }}$ through an external source-follower BiasMOS.(Figure 8 red path)
When the VDD pin is charged up and the voltage on the VDD pin ($\mathrm{V}_{\text {VDD }}$) rises above the UVLO threshold voltage, an internal Bias circuit starts operating, and MB39C604 starts the dimming control. After the UVLO is released, this device enables switching and is operating in a forced switching mode ($T_{\text {ON }}=1.5 \mu \mathrm{~s}, \mathrm{~T}_{\text {OFF }}=78 \mu \mathrm{~s}$ to $320 \mu \mathrm{~s}$). When the voltage on the TZE pin reaches the Zero energy threshold voltage ($\mathrm{V}_{\text {TZETH }}=0.7 \mathrm{~V}$), MB39C604 enters normal operation mode. After the switching begins, the VDD pin is also charged from Auxiliary Winding through an external diode (DBIAS).(Figure 8 blue path)
Around zero cross points of the AC line voltage $V_{\text {VDD }}$ is not supplied from $V_{B U L K}$ or Auxiliary Winding. It is necessary to set an appropriate capacitor of the VDD pin in order to keep $V_{\text {vDD }}$ above the UVLO threshold voltage in this period. An external diode (D1) between BiasMOS and the VDD pin is used to prevent discharge from the VDD pin to $\mathrm{V}_{\text {вuLк }}$ at the zero cross points.

Figure 8. VDD Supply Path at Power-On

Figure 9. Power-On Waveform

8.5 Power-Off Sequence

After the AC line voltage is removed, $\mathrm{V}_{\text {BULK }}$ is discharged by switching operation. Since any Secondary Winding current does not flow, $I_{\text {LED }}$ is supplied only from output capacitors and decreases gradually. $V_{\text {VDD }}$ also decreases because there is no current supply from both Auxiliary Winding and $V_{\text {BuLk. When }}$ Vid falls below the UVLO threshold voltage, MB39C604 shuts down.

Figure 10. Power-Off Waveform
VDD

8.6 $\mathrm{I}_{\text {P PEAK }}$ Detection Function

MB39C604 detects Primary Winding peak current (Ip_peak) of Transformer. ILed is set by connecting a sense resistance (Rcs) between the CS pin and the GND pin. Maximum IP_PEAK (IP_PEAKMAX) limited by Over Current Protection (OCP) can also be set with the resistance.
Using the Secondary to Primary turns ratio $\left(N_{P} / N_{S}\right)$ and $l_{\text {LED }}, R_{C S}$ is set as the following equation (refer to 8.1)

$$
\mathrm{R}_{\mathrm{cs}}=\frac{\mathrm{Np}}{\mathrm{Ns}} \times \frac{0.14}{\text { ILED }}
$$

In addition, using the OCP threshold voltage $\left(V_{\text {OCPTH }}\right)$ and $R_{C S}, I_{\text {P_PEAKMAX }}$ is calculated with the following equation.

$$
\mathrm{IP}_{\text {_PEAKMAX }}=\frac{\mathrm{VOCPTH}}{\mathrm{Rcs}}
$$

8.7 Zero Voltage Switching Function

MB39C604 has built-in zero voltage switching function to minimize switching loss of the external switching MOSFET. This device detects a zero crossing point through a resistor divider connected from the TZE pin to Auxiliary Winding. A zero energy detection circuit detects a negative crossing point of the voltage on the TZE pin to Zero energy threshold voltage ($\mathrm{V}_{\text {TZETL }}$). On-timing of switching MOSFET is decided with waiting an adjustment time ($\mathrm{t}_{\text {ADJ }}$) after the negative crossing occurs.
$t_{A D J}$ is set by connecting an external resistance ($R_{A D J}$) between the ADJ pin and the GND pin. Using Primary Winding inductance $\left(L_{P}\right)$ and the parasitic drain capacitor of switching MOSFET (C_{D}), $t_{A D J}$ is calculated with the following equation.

$$
t_{A D J}=\frac{\pi \sqrt{L_{P} \times C_{D}}}{2}
$$

Using $t_{A D J}, R_{A D J}$ is set as the following equation.

$$
\mathrm{R}_{\mathrm{ADJ}}[\mathrm{k} \Omega]=0.0927 \times \mathrm{t}_{\mathrm{ADJ}}[\mathrm{~ns}]
$$

8.8 Protection Functions

Under Voltage Lockout Protection (UVLO)

The under voltage lockout protection (UVLO) prevents IC from a malfunction in the transient state during $V_{\text {vDD }}$ startup and a malfunction caused by a momentary drop of $\mathrm{V}_{\mathrm{VDD}}$, and protects the system from destruction/deterioration. An UVLO comparator detects the voltage decrease below the UVLO threshold voltage on the VDD pin, and then the DRV pin is turned to "L" and the switching stops. MB39C604 automatically returns to normal operation mode when $\mathrm{V}_{\text {VDD }}$ increases above the UVLO threshold voltage.

Over Voltage Protection (OVP)

The over voltage protection (OVP) protects Secondary side components from an excessive voltage stress. If-the LED is disconnected, the output voltage of Secondary Winding rises up. The output overvoltage can be detected by monitoring the TZE pin. During Secondary Winding energy discharge time, $\mathrm{V}_{\text {TZE }}$ is proportional to $\mathrm{V}_{\text {AUX }}$ and the voltage of Secondary Winding (refer to 8.1). When $V_{\text {TZE }}$ rises higher than the OVP threshold voltage for 3 continues switching cycles, the DRV pin is turned to " L ", and the switching stops (latch off). When $\mathrm{V}_{\mathrm{VDD}}$ drops below the UVLO threshold voltage, the latch is removed.

Over Current Protection (OCP)

The over current protection (OCP) prevents inductor or transformer from saturation. The drain current of the external switching MOSFET is limited by OCP. When the voltage on the CS pin reaches the OCP threshold voltage, the DRV pin is turned to "L" and the switching cycle ends. After zero crossing is detected on the TZE pin again, the DRV pin is turned to " H " and the next switching cycle begins.

Short Circuit Protection (SCP)

The short circuit protection (SCP) protects the transformer and the Secondary side diode from an excessive current stress. When the short circuit between LED terminals occurs, the output voltage decreases. If the voltage on the TZE pin falls below SCP threshold voltage, $\mathrm{V}_{\text {COMP }}$ is discharged and fixed at 1.5 V and then the switching enters a low frequency mode. $\left(\mathrm{T}_{\mathrm{ON}}=1.5 \mu \mathrm{~s} / \mathrm{T}_{\text {OFF }}=\right.$ $78 \mu \mathrm{~s}$ to $320 \mu \mathrm{~s}$)

Over Temperature Protection (OTP)

The over temperature protection (OTP) protects IC from thermal destruction. When the junction temperature reaches $+150^{\circ} \mathrm{C}$, the DRV pin is turned to "L", and the switching stops. It automatically returns to normal operation mode if the junction temperature falls back below $+125^{\circ} \mathrm{C}$.

Table 5. Protection Functions Table

Function	PIN Operation			Detection Condition	Return Condition	Remarks
	DRV	COMP	ADJ			
Normal Operation	Active	Active	Active	-	-	-
Under Voltage Lockout Protection (UVLO)	L	L	L	VDD < 7.9V	VDD > 13V	Auto Restart
Over Voltage Protection (OVP)	L	$\begin{aligned} & 1.5 \mathrm{~V} \\ & \text { fixed } \end{aligned}$	Active	TZE > 4.3V	$\begin{aligned} & \mathrm{VDD}<7.9 \mathrm{~V} \\ & \rightarrow \mathrm{VDD}>13 \mathrm{~V} \end{aligned}$	Latch off
Over Current Protection (OCP)	L	Active	Active	$C S>2 V$	Cycle by cycle	Auto Restart
Short Circuit Protection (SCP)	Active	$\begin{aligned} & 1.5 \mathrm{~V} \\ & \text { fixed } \end{aligned}$	Active	TZE (peak) < 0.7V	TZE (peak) > 0.7 V	Auto Restart
Over Temperature Protection (OTP)	L	$\begin{aligned} & 1.5 \mathrm{~V} \\ & \text { fixed } \end{aligned}$	Active	$\mathrm{Tj}>+150^{\circ} \mathrm{C}$	$\mathrm{Tj}<+125^{\circ} \mathrm{C}$	Auto Restart

9. I/O Pin Equivalent Circuit Diagram

Figure 11. I/O Pin Equivalent Circuit Diagram

Pin No. | Pin |
| :---: |
| Name | (

10. Application Examples

10.1 50W Isolated and PWM Dimming Application

Input: $\mathrm{AC}^{2} 5 \mathrm{~V}_{\text {RMs }}$ to $265 \mathrm{~V}_{\text {RMs }}$, Output: $1.5 \mathrm{~A} / 27 \mathrm{~V}$ to 36 V
Figure 12. 50W EVB Schematic

MB39C604

Table 6. 50W BOM List

No.	Component	Description	Part No.	Vendor
1	M1	Driver IC for LED Lighting, SO-8	MB39C604	Cypress
2	Q1	MOSFET, N-channel, 800V, 5.5A, TO-220F	FQPF8N80C	Fairchild
3	Q2	MOSFET, N-channel, 600 V , 2.8A, TO-251	FQU5N60C	Fairchild
4	BR1	Bridge rectifier, 3A, 600V, GBU-4L	GBU4J	Fairchild
5	D2	Diode, ultra fast rectifier, 10A, 200V, TO-220F	FFPF10UP20S	Fairchild
6	D3	Diode, fast rectifier, 1A, 800V, DO-41	UF4006	Fairchild
7	D5	Diode, $200 \mathrm{~mA}, 200 \mathrm{~V}, \mathrm{SOT}$-23	MMBD1404	Fairchild
8	ZD1	Diode, Zener, 20V, 500 mW , SOD-123	MMSZ20T1G	ON Semiconductor
9	ZD2	Diode, Zener, 18V, 500 mW , SOD-123	MMSZ18T1G	ON Semiconductor
10	T1	Transformer, $200 \mu \mathrm{H}, \mathrm{Np} / \mathrm{Ns}=3.5 / 1 \mathrm{~Np} / \mathrm{Na}=7 / 1$	PQ-2625	-
11	L1	Common mode choke, 47.0 mH	LF2429NP-T473	Sumida
12	L3	Inductor, $1.0 \mathrm{mH}, 0.65 \mathrm{~A}, 0.9 \Omega, \phi 12.5 \times 16.0$	RCH1216BNP-102K	Sumida
13	C1	Capacitor, X2, 305VAC, $0.1 \mu \mathrm{~F}$	B32921C3104M	EPCOS
14	C2	Capacitor, polyester film, $220 \mathrm{nF}, 400 \mathrm{~V}, 18.5 \times 5.9$	ECQ-E4224KF	Panasonic
15	C3,C4	Capacitor, ceramic, $10 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{X7S}$, 1210	C3225X7S1H106K250AB	TDK
16	C5, C6, C7	Capacitor, aluminum electrolytic, $470 \mu \mathrm{~F} 50 \mathrm{~V}, \phi 10.0 \times 20$	EKMG500ELL471MJ20S	NIPPON-CHEMI-CON
17	C8	Capacitor, ceramic, $33 \mathrm{nF}, 250 \mathrm{~V}, 1206$	C3216X7R2E333K160AA	TDK
18	C9	Capacitor, ceramic, $2.2 \mathrm{nF}, \mathrm{X} 1 / \mathrm{Y} 1$ radial	DE1E3KX222M	muRata
19	C12,C16	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$, 0603	-	-
20	C13	Capacitor, aluminum, $47 \mu \mathrm{~F}, 25 \mathrm{~V}$	-	-
21	C14	Capacitor, ceramic, $4.7 \mu \mathrm{~F}, 16 \mathrm{~V}$, 0805	-	-
22	R1	Resistor, chip, $1.00 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}, 1206$	-	-
23	R3,R21	Resistor, $100 \mathrm{k} \Omega$, 2W	-	-
24	R4	Resistor, chip, $68 \mathrm{k} \Omega$, 1/10W, 0603	-	-
25	R5	Resistor, chip, 1.0 M Ω, 1/10W, 0603	-	-
26	R7	Resistor, chip, 10ת, 1/8W, 0805	-	-
27	R8	Resistor, chip, 22, 1/10W, 0603	-	-
28	R9	Resistor, chip, 91 k Ω, 1/10W, 0603	-	-
29	R10	Resistor, chip, $24 \mathrm{k} \Omega$, 1/10W, 0603	-	-
30	R13	Resistor, chip, $27 \mathrm{k} \Omega$, 1/10W, 0603	-	-
31	R14,R22	Resistor, chip, 0.68, , 1/4W, 1206	-	-
32	R15	Resistor, chip, $30 \mathrm{k} \Omega$, 1/10W, 0603	-	-
33	R20	Resistor, chip, $100 \mathrm{k} \Omega$, 1/10W, 0603	-	-
34	VR1	Varistor, 275VAC, 7 mm DISK	ERZ-V07D431	Panasonic
35	F1	Fuse, 2A, 300VAC	3691200000	Littelfuse

Fairchild
On Semiconductor Sumida
EPCOS
Panasonic
TDK
NIPPON-CHEMI-CON
muRata
Littelfuse
: Fairchild Semiconductor International, Inc.
: ON Semiconductor
: SUMIDA CORPORATION
: EPCOS AG
: Panasonic Corporation
: TDK Corporation
: Nippon Chemi-Con Corporation
: Murata Manufacturing Co., Ltd.
: Littelfuse, Inc.

Figure 13. 50W Reference Data

Turn-On Waveform
$\mathrm{V}_{\mathrm{IN}}=220 \mathrm{~V}_{\text {RMS }} / 50 \mathrm{~Hz}$
VDIM=3.3V, LED:OSW4XAHDE1E

Turn-Off Waveform
$\mathrm{V}_{\mathrm{IN}}=220 \mathrm{~V}_{\mathrm{RMS}} / 50 \mathrm{~Hz}$
VDIM=3.3V, LED:OSW4XAHDE1E

Dimming Curve
$\mathrm{V}_{\mathrm{IN}}=100 \mathrm{~V}_{\text {RMS }} / 60 \mathrm{~Hz}$
LED: OSW4XAHDE1E

Total Harmonic Distortion (THD)

10.2 5W Non-Isolated and Non-Dimming Application

Input: $\mathrm{AC}^{25} \mathrm{~V}_{\text {RMs }}$ to $145 \mathrm{~V}_{\text {RMs }}$, Output: $70 \mathrm{~mA} / 67 \mathrm{~V}$ to 82 V
Figure 14. 5W EVB Schematic

Table 7. 5W BOM List

No.	Component	Description	Part No.	Vendor
1	M1	Driver IC for LED Lighting, SO-8	MB39C604	Cypress
2	Q1	MOSFET, N-channel, 600V, 2.8A, TO-251	FQU5N60C	Fairchild
3	BR1	Bridge rectifier, 1A, 600V, Micro-DIP	MDB6S	Fairchild
4	D1	Diode, ultra fast rectifier, 1A, 600V, SMA	ES1J	Fairchild
5	D2	Diode, $200 \mathrm{~mA}, 200 \mathrm{~V}$, SOT-23	MMBD1404	Fairchild
6	ZD1	Diode, Zener, 18V, 500 mW , SOD-123	MMSZ18T1G	ON Semiconductor
7	T1	Transformer, Lp $=430 \mu \mathrm{H}, \mathrm{Np} / \mathrm{Na}=5.33 / 1$	EE808	-
8	L1	Inductor $470 \mu \mathrm{H} 0.31 \mathrm{~A} \phi 7.2 \mathrm{~mm} \times 10.5 \mathrm{~mm}$	22R474C	muRata
9	C1	Capacitor, polyester film, $100 \mathrm{nF}, 630 \mathrm{~V}, 18.5 \times 6.3$	ECQ-E6104KF	Panasonic
10	C2	Capacitor, polyester film, $100 \mathrm{nF}, 250 \mathrm{~V}, 7.9 \times 5.9$	ECQE2104KB	Panasonic
11	C3	Capacitor, aluminum electrolytic, $100 \mu \mathrm{~F} 100 \mathrm{~V}, \phi 10.0 \times 20$	EKMG101ELL101MJ20S	NIPPON-CHEMI-CON
12	C4	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}, 0603$	-	-
13	C5	Capacitor, aluminum, $47 \mu \mathrm{~F}, 25 \mathrm{~V}$	-	-
14	C6	Capacitor, ceramic, $4.7 \mu \mathrm{~F}, 16 \mathrm{~V}, 0805$	-	-
15	C7	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}, 0603$	-	-
16	R1	Resistor, 510, 1/2W	-	-
17	R2	Resistor, chip, 10ת, 1/8W, 0805	-	-
18	R3	Resistor, chip, $110 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 0603$	-	-
19	R4	Resistor, chip, $30 \mathrm{k} \Omega$, 1/10W, 0603	-	-
20	R5	Resistor, chip, $22 \mathrm{k} \Omega$, 1/10W, 0603	-	-
21	R6	Resistor, 2ת, 1W	-	-
22	R7	Resistor, chip, $100 \mathrm{k} \Omega$, 1/10W, 0603	-	-
23	R8	Resistor, $47 \mathrm{k} \Omega$, 2W	-	-

Fairchild
On Semiconductor
Panasonic
NIPPON-CHEMI-CON muRata
: Fairchild Semiconductor International, Inc.
: ON Semiconductor : Panasonic Corporation
: Nippon Chemi-Con Corporation
: Murata Manufacturing Co., Ltd.

Figure 15. 5W Reference Data

Total Harmonic Distortion (THD)
LED: 27pcs in series

11. Usage Precautions

Do not configure the IC over the maximum ratings.
If the IC is used over the maximum ratings, the LSI may be permanently damaged.
It is preferable for the device to normally operate within the recommended usage conditions. Usage outside of these conditions can have an adverse effect on the reliability of the LSI.

Use the device within the recommended operating conditions.
The recommended values guarantee the normal LSI operation under the recommended operating conditions.
The electrical ratings are guaranteed when the device is used within the recommended operating conditions and under the conditions stated for each item.

Printed circuit board ground lines should be set up with consideration for common impedance.
Take appropriate measures against static electricity.
■Containers for semiconductor materials should have anti-static protection or be made of conductive material.
■After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
■Work platforms, tools, and instruments should be properly grounded.
■Working personnel should be grounded with resistance of $250 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ in serial between body and ground.

Do not apply negative voltages.
The use of negative voltages below - 0.3 V may make the parasitic transistor activated to the LSI, and can cause malfunctions.

12. RoHS Compliance Information

This product has observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).

13. Ordering Information

Table 8. Ordering Information

Part Number	Package	Shipping Form
MB39C604PNF-G-JNEFE1		Emboss
	8-pin plastic SOP MB39C604PNF-G-JNE1	(SOB008)
		Tube

MB39C604

14. Package Dimensions

Package Code: SOB008

DETAILA

| SYMBOL | DIMENSIONS | | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN. | NOM. | MAX. |
| A | - | - | 1.75 |
| A1 | 0.05 | - | 0.25 |
| A2 | 1.30 | 1.40 | 1.50 |
| D | 5.05 BSC. | | |
| E | 6.00 BSC.$$ | | |
| E1 | 3.90 BSC | | |
| θ | 00° | - | 8° |
| c | 0.15 | - | 0.25 |
| b | 0.36 | 0.44 | 0.52 |
| L | 0.45 | 0.60 | 0.75 |
| L 1 | 1.05 REF | | |
| L 2 | 0.25 BSC | | |
| e | 1.27 BSC. | | |
| h | 0.40 BSC.$$ | | |

NOTES

1. ALL DIMENSIONS ARE IN MILLIMETER.
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
3. DIMENSIONING D INCLUDE MOLD FLASH, DIMENSIONING E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.025 mm PER SIDE. D and E1 DIMENSION ARE DETERMINED AT DATUM H .
4. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONING D and E1 ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY
S. DATUMS A \& B TO BE DETERMINED AT DATUM H.
5. "N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR THE SPECIFIED PACKAGE LENGTH.
A THE DIMENSION APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 mm TO 0.25 mm FROM THE LEAD TIP
6. DIMENSION "b" DOES NOT INCLUDE THE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10 mm TOTAL IN EXCESS OF THE "b" DIMENSION AT MAXIMUM MATERIAL CONDITION. THE DAMBAR MAY NOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT
Q THIS CHAMFER FEATURE IS OPTIONAL. LF IT IS NOT PRESENT. THEN A PIN 1 IDENTIFIER MUST BE LOCATED WITHIN THE INDEX AREA INDICATED
"A1" IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY EXCLUDING THE LID AND OR THERMAL ENHANCEMENT ON CAVITY DOWN PACKAGE CONFIGURATIONS.
7. JEDEC SPECIFICATION NO. REF : N/A

15. Major Changes

Spansion Publication Number: MB39C604_DS405-00016

Page	Section	Descriptions
Revision 1.0		
-	-	Initial release
Revision 2.0		
16	11. Function Explanations 11.7 Zero Voltage Switching Function	Corrected the $\mathrm{R}_{\text {ADJ }}$ formula
32	15. Ordering Information	Added Shipping in Table 15-1
-	-	Rewrote entire document for improving the ease of understanding (the original intentions are remained unchanged).
Revision 2.0		
8	7. Absolute Maximum Ratings	Removed ESD Voltage (Machine Model) from Table 7-1
-	Labeling Sample	Removed section of Labeling Sample
34	17. Recommended mounting condition [JEDEC Level3] Lead Free	Changed Recommended Condition from three conditions to one condition "JEDEC LEVEL3"

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB39C604 PSR LED Driver IC for LED Lighting Document Number: 002-08441

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	HSAT	02/20/2015	Migrated to Cypress and assigned document number 002-08441. No change to document contents or format.
*A	5141647	HSAT	02/22/2016	Updated to Cypress format.
*B	5740103	HIXT	05/22/2017	Updated Pin Assignment: Change the package name from FPT-8P-M02 to SOB008 Added RoHS Compliance Information Updated Ordering Information: Change the package name from FPT-8P-M02 to SOB008 Deleted "Marking Format" Deleted "Recommended Mounting Condition [JEDEC Level3] Lead Free" Updated Package Dimensions: Updated to Cypress format
*C	6059028	YOST	02/05/2018	Updated the Sales information and legal. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products
Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers
cypress.com/arm
Automotive
Clocks \& Buffers
Interface
Internet of Things
cypress.com/interface
cypress.com/iot
Memory
Microcontrollers
PSoC
Power Management ICs
Touch Sensing
USB Controllers
Wireless Connectivity
cypress.com/automotive
cypress.com/clocks
cypress.com/memory
cypress.com/mcu
cypress.com/psoc
cypress.com/pmic
cypress.com/touch
cypress.com/usb
cypress.com/wireless

PSoC ${ }^{\circledR}$ Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos \| Blogs \| Training
Components

Technical Support

cypress.com/support

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
© Cypress Semiconductor Corporation, 2014-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,

 other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are
 modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No COMPuting device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of

 any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

