CHEMTRONICS Technical Data Sheet

CW2000

CircuitWorks® Nickel Conductive Pen

PRODUCT DESCRIPTION

CircuitWorks® Nickel Conductive Pen makes instant conductive traces on circuit boards. As an economical alternative to the CW2200 Silver Conductive Pen. engineered nickel coating offers good electrical and thermal conductivity. The Nickel Conductive Pen is used in prototype, rework, and repair of circuit boards by linking components, repairing defective traces, and making smooth jumpers. nickel traces dry in minutes and has excellent adhesion to most electronic materials. Engineers, repair technicians, and manufacturers will find that $CircuitWorks^{\tiny{\circledR}}$ Nickel Conductive Pen speeds project completion and cuts rework time.

- Quickly creates conductive nickel traces on most surfaces
- Easy and economical to use
- Valved pen tip for easy applications
- Dries in minutes at room temperature
- Single component system
- Good electrical and thermal conductivity

TYPICAL APPLICATIONS

CircuitWorks® Nickel Conductive Pen may be used for electronics applications including:

- Circuit Trace Repair
- Solderless Linking of Components
- EMI Shielding
- Quick Prototype Modifications

TYPICAL PRODUCT DATA AND PHYSICAL PROPERTIES

Composition Material Nickel Filled Polymer Color Dark Gray **Setting Rate** < 2mm/hr. **Properties** Conductivity 1.0 - 1.5 ohms/sq/mil Tack-Free Time @ 25°C 15 to 20 minutes Full Cure Time @ 25°C 24 hours **Electrical Conductivity** Good Adhesion Excellent Flexibility Good Chemical Resistance Good Shelflife 12 months **RoHS Compliant**

COMPATIBILITY

CircuitWorks® Nickel Conductive Pen material has excellent compatibility with materials used in printed circuit board fabrication. As with any chemical system, compatibility with the substrate must be determined on a non-critical area prior to use.

USAGE INSTRUCTIONS Read MSDS carefully prior to use.

Cleaning: For best adhesion, clean board with Chemtronics Electro-Wash[®] PX Cleaner Degreaser in order to remove any surface contamination which may prevent adequate material contact.

Mixing: Although this system has been formulated to resist hard-packing, it should be shaken vigorously for 30 seconds to insure the proper dispersion of the nickel flakes. If pen has been allowed to sit idle for a long period of time, the mixing ball may seize in the barrel. To free the mixing ball use force to tap the barrel end of the pen until the ball begins to move inside the pen.

Application: The conductive ink is dispensed through the CircuitWorks[®] Nickel Conductive Pen. Squeezing the pen body while pressing down on the surface will allow the material to flow through the tip, enabling the trace to be drawn. Practice with the pen before attempting detail work.

Thinning: The conductive ink has been optimized for the CircuitWorks[®] Nickel Conductive Pen and thinning is not normally necessary.

Clean-up/Removal: The conductive ink may be cleaned or removed using Chemtronics[®] Electro-Wash[®] PX.

Curing: Dries tack-free in 15 to 20 minutes at room temperature. Achieves electrical conductivity within 30 minutes. Full conductivity after 24 hours at room temperature. Heat cure for 10 - 15 minutes at 150 to 210°F (80 to 100°C) for maximum conductivity, durability and chemical resistance.

TECHNICAL & APPLICATION ASSISTANCE

Chemtronics provides a technical hotline to answer your technical and application related questions. The toll free number is: **1-800-TECH-401.**

AVAILABILITY

CW2000 8.5 g (0.3 oz), Standard Tip Pen

ENVIRONMENTAL IMPACT DATA					
ODP	None	VOC	Yes		
HCFC	None	HFC	None		

Ozone depletion potential (ODP) is determined in accordance with the Montreal Protocol and U.S. Clean Air Act of 1990. Hydrochlorofluorocarbons (HCFCs) are regulated under the Montreal Protocol as Class II ozone depleting substances. Volatile Organic Compound (VOC) information is calculated on a weight basis using the VOC definition of California Air Resources Board (CARB) Consumer Product Regulations, South Coast Air Quality Management District (SCAQMD) Rule 102 and the Federal definition published in 40 CFR 51.100(s). Hydrofluorocarbons (HFCs) are not currently regulated.

NOTE:

This information is believed to be accurate. It is intended for professional end users having the skills to evaluate and use the data properly. CHEMTRONICS does not guarantee the accuracy of the data and assumes no liability in connection with damages incurred while using it.

CHEMTRONICS 8125 COBB CENTER DRIVE KENNESAW, GA 30152 1-770-424-4888 REV. B (08/13)

Chemtronics®, Electro-Wash® and CircuitWorks® are registered trademarks of Chemtronics. All rights reserved.

DISTRIBUTED BY:

ZISTILIZ CILIZ ZII		