
AVR-Based Serial Enabled LCDs Hookup Guide

Introduction
The AVR-based serial enabled LCD (a.k.a. SerLCD) is a simple and cost effective solution for adding Liquid
Crystal Displays (LCDs) into your project. The PCB design on the back of the screen includes an ATMega328P
that handles all of the screen control. It can accept commands via serial, I C and SPI. This simplifies the number
of wires needed and allows your project to display all kinds of text and numbers.

The firmware is fully opensource and available for download at the github repo here:

OPENLCD FIRMWARE GITHUB REPOSITORY

This allows for any customizations you may need. Uploading firmware (custom or updates), is easily done from the
Arduino IDE using a Serial Basic. See firmware update instructions in the troubleshooting section of this tutorial for
more info.

Also note, the example code used below is all available in the repo (along with many more examples). Before
beginning this tutorial, it’s a good idea to clone the repository (or download the entire repo as a zip), to grab all of
the examples. But if you prefer, you can always use the “COPY CODE” button on each of the examples below.

We offer three varieties of the AVR-based Serial Enabled LCDs:

2

SparkFun 20x4 SerLCD - Black on RGB 3.3V
 LCD-14074

SparkFun 16x2 SerLCD - RGB on Black 3.3V
 LCD-14073

YOUR ACCOUNT

LOG IN

REGISTER

https://www.sparkfun.com/
https://www.sparkfun.com/products/14072
https://github.com/sparkfun/OpenLCD
https://github.com/sparkfun/OpenLCD
https://www.sparkfun.com/products/14050
https://github.com/sparkfun/OpenLCD/archive/master.zip
https://www.sparkfun.com/products/14074
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14074
https://www.sparkfun.com/products/14073
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14073
https://www.sparkfun.com/account/login?redirect=%2Flearn%2Ftutorials%2Favr-based-serial-enabled-lcds-hookup-guide%2Fall
https://www.sparkfun.com/account/make

Wishlist for AVR-based Serial Enabled LCDs Hookup Guide SparkFun Wish List

Note that these all have identical firmware and can accept the same commands. However, you must adjust your
display characters and cursor position as necessary for each model. Also note, there is a jumper on the back of
each screen, and this “tells” the firmware how to correctly set the lines and columns for each screen.

Required Materials

To follow along with this tutorial, you will need the following materials at a minimum. Depending on what you have,
you may not need everything on this list. Add it to your cart, read through the guide, and adjust the cart as
necessary.

SparkFun 16x2 SerLCD - Black on RGB 3.3V
LCD-14072

Trimpot 10K with Knob
COM-09806

There are lots of trimpots out there. Some are very large, some so small they require a screwdriver. Here at SparkF…

Wall Adapter Power Supply - 5V DC 2A (Barrel Jack)
TOL-12889

SparkFun 16x2 SerLCD - Black on RGB 3.3V
 LCD-14072

https://www.sparkfun.com/wish_lists/146659
https://www.sparkfun.com/products/14072
https://www.sparkfun.com/products/9806
https://www.sparkfun.com/products/12889
https://www.sparkfun.com/products/14072
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14072

This is a high quality switching 'wall wart' AC to DC 5V 2000mA Barrel Jack wall power supply manufactured specif…

SparkFun USB Mini-B Cable - 6 Foot
CAB-11301

This is a USB 2.0 type A to Mini-B 5-pin cable. You know, the mini-B connector that usually comes with USB Hubs, …

Arduino and Breadboard Holder
DEV-11235

We've been prototyping for a long time on these awesome little plastic plates but it's time for an upgrade. This versi…

Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power buses, 10 columns, and 30 rows - a total of …

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

If you need to knock up a quick prototype there's nothing like having a pile of jumper wires to speed things up, and …

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Used with custom PCBs or general custom head…

SparkFun Logic Level Converter - Bi-Directional
BOB-12009

If you've ever tried to connect a 3.3V device to a 5V system, you know what a challenge it can be. The SparkFun bi…

SparkFun RedBoard - Programmed with Arduino
DEV-13975

At SparkFun we use many Arduinos and we're always looking for the simplest, most stable one. Each board is a bit…

Tools

You may need a soldering iron, solder, and general soldering accessories, and screw driver depending on your
setup.

Solder Lead Free - 100-gram Spool
 TOL-09325

Pocket Screwdriver Set
 TOL-12891

https://www.sparkfun.com/products/12889
https://www.sparkfun.com/products/11301
https://www.sparkfun.com/products/11235
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/116
https://www.sparkfun.com/products/12009
https://www.sparkfun.com/products/13975
https://www.sparkfun.com/categories/49
https://www.sparkfun.com/products/9325
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9325
https://www.sparkfun.com/products/12891
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12891

Suggested Reading

If you aren’t familiar with the following concepts, we recommend checking out these tutorials before continuing.

Weller WLC100 Soldering Station
 TOL-14228

How to Solder: Through-Hole Soldering
This tutorial covers everything you need to know about
through-hole soldering.

Serial Communication
Asynchronous serial communication concepts: packets,
signal levels, baud rates, UARTs and more!

Serial Peripheral Interface (SPI)
SPI is commonly used to connect microcontrollers to
peripherals such as sensors, shift registers, and SD
cards.

What is an Arduino?
What is this 'Arduino' thing anyway?

https://www.sparkfun.com/products/14228
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14228
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/what-is-an-arduino
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/logic-levels

 Note: Click on any of the images in this tutorial for a closer look!

Hardware Overview
The AVR-based SerLCD has some new features that make it even more powerful and economical:

AVR microcontroller utilizes 11.0592 MHz crystal for greater communication accuracy
Adjustable baud rates of 1200, 2400, 4800, 9600 (default), 14400, 19200, 38400, 57600, 115200,
230400, 460800, 921600, 1000000

The AVR ATMega328p (with Arduino-compatible bootloader) is populated on the back of each LCD screen
and handles all of the LCD control
3 communication options: Serial, I C and SPI
Adjustable I C address controlled via software special commands (0x72 default)
Emergency reset to factory settings (Jumper RX to GND on bootup)
Operational backspace character
Incoming buffer stores up to 80 characters
Pulse width modulation of backlight allows direct control of backlight brightness and current consumption
Pulse width modulation of contrast allows for software defined contrast amount. The previous backpack
versions of this product required adjusting the contrast via a hardware trim-pot which was less precise and
less accessible in most enclosed projects.
User definable splash screen
Open-sourced firmware and Arduino-compatible bootloader enables updates via the Arduino IDE

AVR-Based Serial Controller (3.3V logic only)

Using these screens, it is easy to connect to any microcontroller that has a serial UART, I C, or SPI. You could
also use a single board computer such as the Raspberry Pi if you wanted. Whatever you choose, please make
sure you convert to 3.3V Logic! In our examples below, we chose to use our Redboard with a Logic Level
Converter.

Installing Arduino IDE
A step-by-step guide to installing and testing the
Arduino software on Windows, Mac, and Linux.

Logic Levels
Learn the difference between 3.3V and 5V devices and
logic levels.

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

ASCII
A brief history of how ASCII came to be, how it's useful
to computers, and some helpful tables to convert
numbers to characters.

2

2

2

https://learn.sparkfun.com/tutorials/pic-based-serial-enabled-character-lcd-hookup-guide#introduction
https://www.sparkfun.com/categories/233
https://www.sparkfun.com/products/13975
https://www.sparkfun.com/products/12009
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/logic-levels
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/ascii

Example setup including 5V Redboard and Logic Level Converter

Connection Options

Both sizes of these screens (16x2 and 20x4) have a row of headers along the top side. This is where you can
connect power and your choice of communication protocol (Serial UART, I C, or SPI). It also has our 6-pin Arduino
Serial port available for convenient firmware updates.

Main header pinouts

Note, if you choose Serial UART, there is a handy 3-pin JST footprint. This includes the minimum connections
needed: RX, GND and VIN. Our JST Jumper 3 Wire Assembly is a good way to go:

2

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/logiclevelhighlight2.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/hardwareoverview1.jpg
https://www.sparkfun.com/products/9915

Location on screen JST Jumper 3 Wire Assembly

Input Voltage (VDD) and Logic Levels

All of these screens can be powered by 3.3-9V. You have two pin options for connecting up power. One is labeled
“RAW” and the other (on the 3-pin JST) is labeled “3.3-9V”. Note, the pin labeled “+” is NOT a power input pin!
This is connected to the VCC of the ATMega329p (3.3V).

Power Input pin options and Atmega328 VCC pin

Pro tip: If you plan to run 100% brightness on all three colors (red, green, blue), then it would be best to keep your
power input voltage low. As close to 3.3V as possible is best. This will keep the on-board linear 3.3V voltage
regulator nice and cool. It can accept up to 9V and power all three backlights at 100%, but it will get a little warm,
and over years of use, potentially damage the vreg. For more information about vregs and why they heat up
sometimes, please check out our tutorial: Power and Thermal Dissipation

⚡ Warning! ONLY USE 3.3V LOGIC LEVELS when connecting to any of the data pins on the LCD screens.
Connecting directly from a 5V microcontroller (such as the Redboard) will damage your LCD screen
permanantly!

Contrast Control

https://cdn.sparkfun.com/r/600-600/assets/learn_tutorials/7/8/9/jstserialv3.jpg
https://www.sparkfun.com/products/9915
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/PWRpinouts.jpg
https://www.sparkfun.com/tutorials/217

The on-board ATMega328p controls the contrast of the screen using a PWM signal. This can be adjusted by
sending a command via Serial UART, I C, or SPI. The screens ship out with the contrast setting set to 10, which
we have found works well for most environments. Temperature and supply voltage can affect the contrast of the
LCD, so you may need to adjust it accordingly. For more info about contrast and a detailed example, please see
the section below called: Serial UART: Example Code - Contrast Control with a Trimpot.

Hardware Hookup - Initial

Install Headers

For this tutorial, we are going to try out Serial UART, I C, and SPI. In order to easily follow along using a
breadboard, solder some headers to the connection ports along the side of your screen. Also solder some headers
onto either side of the Logic Level converter. This will allow us to easily plug these into the breadboard and wire
each data line up with jumper wires.

Headers on screen Headers on logic level converter

Note, we are going to use the 16x2 model with RGB backlight during this tutorial. If you are using a different model
(RGB text or the 20x4), then the header pin-out and spacing is identical.

Connecting to an Arduino

 Warning! Do not use the TX pin from your Arduino (aka "hardware serial TX") to control your LCD.

The TX pin is used for Serial Uploads of new sketches onto your Arduino, and will cause problems for both your
Arduino and the LCD. In other words, when you upload new code to your “project” Arduino, it will be confused
because the screen is sharing that TX pin. Please only use software serial to control your LCD. For all of the Serial
UART examples, we have setup software serial on D7.

 Warning! The RX input should be a TTL-level signal of 3.3V. If you are using a 5V Arduino, you will need
a logic level converter between the two.

2

2

https://learn.sparkfun.com/tutorials/avr-based-serial-enabled-lcds-hookup-guide/serial-uart-example-code---contrast-control-with-a-trimpot
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://cdn.sparkfun.com/r/600-600/assets/learn_tutorials/7/8/9/IMG_1471.jpg
https://cdn.sparkfun.com/r/600-600/assets/learn_tutorials/7/8/9/IMG_1472.jpg

You should NOT connect the board directly to RS232-level voltages (which are around +/-10V). This will
damage the board. For more information on RS232, see our explanation here). If you do wish to connect this
display to RS232 signals, you can use a level-shifting board to translate the RS232 signals to TTL-level
signals.

SparkFun Logic Level Converter - Bi-
Directional
 BOB-12009

SparkFun Level Translator Breakout -
PCA9306
 BOB-11955

SparkFun Voltage-Level Translator Breakout -
TXB0104
 BOB-11771

SparkFun Transceiver Breakout - MAX3232
 BOB-11189

SparkFun RS232 Shifter - SMD
 PRT-00449

http://www.sparkfun.com/tutorials/215
https://www.sparkfun.com/products/12009
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12009
https://www.sparkfun.com/products/11955
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11955
https://www.sparkfun.com/products/11771
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11771
https://www.sparkfun.com/products/11189
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/11189
https://www.sparkfun.com/products/449
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/449

For the first set of examples in this tutorial (SERIAL UART), there are three connections you need to make to the
LCD: RX, GND, and RAW. For the other communication protocols that we will explore later, you will need to wire
up some other lines. Please see the following Fritzing graphic to see how to wire up your connections through a
logic level converter.

Firmware Overview
The most basic way to use these screens is to simply send characters to them. They will display on the screen as
you send them, and then if you go beyond the last character of the screen, it will begin overwriting from the first
spot.

SparkFun RS232 Shifter SMD (No DB9)
 PRT-08780

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/LCD_Serial_basic_bb.png
https://www.sparkfun.com/products/8780
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/8780

You can choose to send characters over Serial UART, I C, or SPI. The best way to learn about each
communication protocol is to try out the “basic” example located in the github repository.

Note: The examples in this tutorial assume you are using the latest version of the Arduino IDE on your
desktop. If this is your first time using Arduino, please review our tutorial on installing the Arduino IDE.

In addition to basic operation, there are special commands you can send the screen for special operations (like
“clear screen” or set cursor position) and configuration settings (like BAUD RATE).

Configuration & Command Set

The special character for “or” (aka ‘|’) used to tell the screen to enter “settings mode”. You then follow this
command with another special character (usually “ctrl+c”, ctrl+d, etc.). A complete table of commands are shown
below in ASCII, DEC and HEX. Any one of these representations is acceptable when sending a command
character.

The HD44780 LCD controller is very common. The extended commands for this chip include but are not limited to
those described in table. Please refer to the HD44780 datasheet for more information.

Note, this “cheat sheet” is also located at the top of each example code section for easy reference.

ASCII DEC HEX Description

'|' 124 0x7C Enter Settings Mode

ctrl+h 8 0x08 Software reset of the system

ctrl+i 9 0x09 Enable/disable splash screen

ctrl+j 10 0x0A Save currently displayed text as splash

ctrl+k 11 0x0B Change baud to 2400bps

ctrl+l 12 0x0C Change baud to 4800bps

ctrl+m 13 0x0D Change baud to 9600bps

ctrl+n 14 0x0E Change baud to 14400bps

ctrl+o 15 0x0F Change baud to 19200bps

ctrl+p 16 0x10 Change baud to 38400bps

ctrl+q 17 0x11 Change baud to 57600bps

ctrl+r 18 0x12 Change baud to 115200bps

ctrl+s 19 0x13 Change baud to 230400bps

ctrl+t 20 0x14 Change baud to 460800bps

2

https://github.com/sparkfun/OpenLCD/tree/master/firmware/Examples
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf

ctrl+u 21 0x15 Change baud to 921600bps

ctrl+v 22 0x16 Change baud to 1000000bps

ctrl+w 23 0x17 Change baud to 1200bps

ctrl+x 24 0x18 Change the contrast. Follow Ctrl+x with number 0 to 255. 40 is default.

ctrl+y
25 0x19 Change the TWI address. Follow Ctrl+x with number 0 to 255. 114 (0x72) is

default.

ctrl+z 26 0x1A Enable/disable ignore RX pin on startup (ignore emergency reset)

'-' 45 0x2D Clear display. Move cursor to home position.

n/a
128-
157

0x80-
0x9D

Set the primary backlight brightness. 128 = Off, 157 = 100%.

n/a
158-
187

0x9E-
0xBB

Set the green backlight brightness. 158 = Off, 187 = 100%.

n/a
188-
217

0xBC-
0xD9

Set the blue backlight brightness. 188 = Off, 217 = 100%.

OpenLCD “Cheat Sheet” Command Set

Clear Screen and Set Cursor Position

Clear display and set cursor position are the two commands that are used frequently. To clear the screen, send the
control character ‘|’ followed by ‘-’. Clearing the screen resets the cursor position back to position 0 (i.e. the first
character on the first line).

Here’s how you could do it doing a Serial UART write on software serial:

OpenLCD.write('|'); //Send setting character
OpenLCD.write('-'); //Send clear display character

Note, most of the example sketches in the repo use these two commands during setup(), so you can try any of the
examples out to see these commands in action.

To set the active cursor position, send the control character 254 followed by 128 + row + position. To give this a
shot, check out the complete example sketch in the github repo or copy and paste the following into your Arduino
IDE:

https://github.com/sparkfun/OpenLCD/tree/master/firmware/Examples
https://github.com/sparkfun/OpenLCD/blob/master/firmware/Examples/Serial/Example6_Serial_CursorPosition/Example6_Serial_CursorPosition.ino

/*
 OpenLCD is an LCD with Serial/I2C/SPI interfaces.
 By: Nathan Seidle
 SparkFun Electronics
 Date: April 19th, 2015
 License: This code is public domain but you buy me a beer if you use this and we meet someday
 (Beerware license).

 OpenLCD gives the user multiple interfaces (serial, I2C, and SPI) to control an LCD. SerLCD was
 the original
 serial LCD from SparkFun that ran on the PIC 16F88 with only a serial interface and limited fea
ture set.
 This is an updated serial LCD.

 This example shows how to change the position of the cursor. This is very important as this is
 the
 fastest way to update the screen, ie - rather than clearing the display and re-transmitting a h
andful of bytes
 a cursor move allows us to re-paint only what we need to update.

 We assume the module is currently at default 9600bps.

 We use software serial because if OpenLCD is attached to an Arduino's hardware serial port duri
ng bootloading
 it can cause problems for both devices.

 Note: If OpenLCD gets into an unknown state or you otherwise can't communicate with it send 18
 (0x12 or ctrl+r)
 at 9600 baud while the splash screen is active and the unit will reset to 9600 baud.

 Emergency reset: If you get OpenLCD stuck into an unknown baud rate, unknown I2C address, etc,
 there is a
 safety mechanism built-in. Tie the RX pin to ground and power up OpenLCD. You should see the sp
lash screen
 then "System reset Power cycle me" and the backlight will begin to blink. Now power down OpenLC
D and remove
 the RX/GND jumper. OpenLCD is now reset to 9600bps with a I2C address of 0x72. Note: This featu
re can be
 disabled if necessary. See *Ignore Emergency Reset* for more information.

 To get this code to work, attached an OpenLCD to an Arduino Uno using the following pins:
 RX (OpenLCD) to Pin 7 (Arduino)
 VIN to 5V
 GND to GND

 Command cheat sheet:
 ASCII / DEC / HEX
 '|' / 124 / 0x7C - Put into setting mode

 Ctrl+c / 3 / 0x03 - Change width to 20
 Ctrl+d / 4 / 0x04 - Change width to 16
 Ctrl+e / 5 / 0x05 - Change lines to 4
 Ctrl+f / 6 / 0x06 - Change lines to 2
 Ctrl+g / 7 / 0x07 - Change lines to 1

 Ctrl+h / 8 / 0x08 - Software reset of the system
 Ctrl+i / 9 / 0x09 - Enable/disable splash screen
 Ctrl+j / 10 / 0x0A - Save currently displayed text as splash
 Ctrl+k / 11 / 0x0B - Change baud to 2400bps
 Ctrl+l / 12 / 0x0C - Change baud to 4800bps
 Ctrl+m / 13 / 0x0D - Change baud to 9600bps
 Ctrl+n / 14 / 0x0E - Change baud to 14400bps
 Ctrl+o / 15 / 0x0F - Change baud to 19200bps
 Ctrl+p / 16 / 0x10 - Change baud to 38400bps
 Ctrl+q / 17 / 0x11 - Change baud to 57600bps
 Ctrl+r / 18 / 0x12 - Change baud to 115200bps
 Ctrl+s / 19 / 0x13 - Change baud to 230400bps
 Ctrl+t / 20 / 0x14 - Change baud to 460800bps
 Ctrl+u / 21 / 0x15 - Change baud to 921600bps
 Ctrl+v / 22 / 0x16 - Change baud to 1000000bps
 Ctrl+w / 23 / 0x17 - Change baud to 1200bps
 Ctrl+x / 24 / 0x18 - Change the contrast. Follow Ctrl+x with number 0 to 255. 120 is default.
 Ctrl+y / 25 / 0x19 - Change the TWI address. Follow Ctrl+x with number 0 to 255. 114 (0x72) is
 default.
 Ctrl+z / 26 / 0x1A - Enable/disable ignore RX pin on startup (ignore emergency reset)
 '-' / 45 / 0x2D - Clear display. Move cursor to home position.
 / 128-157 / 0x80-0x9D - Set the primary backlight brightness. 128 = Off, 157 = 100%.
 / 158-187 / 0x9E-0xBB - Set the green backlight brightness. 158 = Off, 187 = 100%.
 / 188-217 / 0xBC-0xD9 - Set the blue backlight brightness. 188 = Off, 217 = 100%.

 For example, to change the baud rate to 115200 send 124 followed by 18.

*/

#include <SoftwareSerial.h>

SoftwareSerial OpenLCD(6, 7); //RX (not used), TX

int counter = 250;

void setup()
{
 Serial.begin(9600); //Start serial communication at 9600 for debug statements
 Serial.println("OpenLCD Example Code");

 OpenLCD.begin(115200); //Begin communication with OpenLCD

 //Send the reset command to the display - this forces the cursor to return to the beginning of
 the display
 OpenLCD.write('|'); //Send setting character
 OpenLCD.write('-'); //Send clear display character

 OpenLCD.print("Hello World! Counter: "); //For 16x2 LCDs
 //OpenLCD.print("Hello World! Counter: "); //For 20x4 LCDs

}

void loop()
{
 OpenLCD.write(254); //Send command character

 OpenLCD.write(128 + 64 + 9); //Change the position (128) of the cursor to 2nd row (64), positi
on 9 (9)

 OpenLCD.print(counter++); //Re-print the counter
 //OpenLCD.print(" "); //When the counter wraps back to 0 it leaves artifacts on the display

 delay(2); //Hang out for a bit if we are running at 115200bps
}

The two lines of code that are actually changing the cursor position are as follows:

OpenLCD.write(254); //Send command character
OpenLCD.write(128 + 64 + 9); //Change the position (128) of the cursor to 2nd row (64), position
 9 (9)

The example sets the cursor to the second row, position 9. To set the cursor to the first row, position 0, the
command would look like this:

OpenLCD.write(254); //Send command character
OpenLCD.write(128 + 0 + 0); //Change the position (128) of the cursor to 1st row (0), position 0
 (0)

Use the following tables to see row commands and available positions:

16 Character Displays

Line Number (command) Viewable Cursor Positions

1 (0) 0-15

2 (64) 0-15

20 Character Displays

Line Number (command) Viewable Cursor Positions

1 (0) 0-19

2 (64) 0-19

3 (20) 0-19

4 (84) 0-19

Setting Up the LCD Size

You should never need to send any screen size configuration commands to setup these screens. During setup(),
the firmware looks at a specific pin that is either left floating or tied high. From this it can determine which screen
size it is populated on (16x2 or 20x4). However, the commands are still available for manually setting the width
and lines.

ASCII DEC HEX Description

'|' 124 0x7C Enter Settings Mode

ctrl+c 3 0x03 Change width to 20

ctrl+d 4 0x04 Change width to 16

ctrl+e 5 0x05 Change lines to 4

ctrl+f 6 0x06 Change lines to 2

ctrl+g 7 0x07 Change lines to 1

Changing the Baud Rate

The screens ship out with a default baud rate setting to 9600 baud, but they can be set to a variety of baud rates.
The 11.0592 MHz crystal provides greater clock accuracy and allows for baud rates up to 1MHz!

To change the baud rate, you will need to send two commands: First, send the “|” command to enter settings
mode. Second, send the desired baud rate command. (For example, to set it to 57600, you’d send | , then Ctrl
+ q)

 Caution! Once you change the baud rate, you need to change the baud rate of your controlling device to
match this. To change the LCD's baud rate from 9600 to 57600, first enter the control character 0x7C control
and 0x11. Then adjust your microcontroller's code to match the baud rate of 57600.

Here is a table will all of the available baud rate settings commands:

ASCII DEC HEX Description

'|' 124 0x7C Enter Settings Mode

ctrl+k 11 0x0B Change baud to 2400bps

ctrl+l 12 0x0C Change baud to 4800bps

ctrl+m 13 0x0D Change baud to 9600bps

ctrl+n 14 0x0E Change baud to 14400bps

ctrl+o 15 0x0F Change baud to 19200bps

ctrl+p 16 0x10 Change baud to 38400bps

ctrl+q 17 0x11 Change baud to 57600bps

ctrl+r 18 0x12 Change baud to 115200bps

ctrl+s 19 0x13 Change baud to 230400bps

ctrl+t 20 0x14 Change baud to 460800bps

ctrl+u 21 0x15 Change baud to 921600bps

ctrl+v 22 0x16 Change baud to 1000000bps

OpenLCD Baud Rate Command Set

If your screen enters into an unknown state or you otherwise can’t communicate with it, try sending a Ctrl + r
(0x12) character at 9600 baud while the splash screen is active (during the first 500 ms of boot-up) and the unit
will reset to 9600 baud.

Backlight Brightness

These screens provide you with control of the backlight to one of 30 different brightness levels on each of the
colors (Red, Green and Blue). With this, you can mix colors together to get almost any custom color you’d like.
This is also handy when power consumption of the unit must be minimized. By reducing the brightness, the overall
backlight current consumption is reduced.

Note: The LCD screens that have RGB text on black background, the control of the "backlight" is actually
controlling the RGB values of the text brightness.

To change the backlight brightness, you will need to send two commands: First, send the “|” command to enter
settings mode. Second, send a number that corresponds to the color and brightness you’d like to set. (For
example, to set the Green backlight to 100%, you’d send | , then 187). For some good example code on how to
adjust any and all of the colors, check out the example sketch here or copy and paste the code below into your
Arduino IDE:

https://github.com/sparkfun/OpenLCD/blob/master/firmware/Examples/Serial/Example4_Serial_Backlight/Example4_Serial_Backlight.ino

/*
 OpenLCD is an LCD with serial/I2C/SPI interfaces.
 By: Nathan Seidle
 SparkFun Electronics
 Date: April 19th, 2015
 License: This code is public domain but you buy me a beer if you use this and we meet someday
 (Beerware license).
 OpenLCD gives the user multiple interfaces (serial, I2C, and SPI) to control an LCD. SerLCD was
 the original
 serial LCD from SparkFun that ran on the PIC 16F88 with only a serial interface and limited fea
ture set.
 This is an updated serial LCD.

 This example shows how to change the backlight brightness. We assume the module is currently at
 default 9600bps.
 We use software serial because if OpenLCD is attached to an Arduino's hardware serial port duri
ng bootloading
 it can cause problems for both devices.
 Note: If OpenLCD gets into an unknown state or you otherwise can't communicate with it send 18
 (0x12 or ctrl+r)
 at 9600 baud while the splash screen is active and the unit will reset to 9600 baud.
 Emergency reset: If you get OpenLCD stuck into an unknown baud rate, unknown I2C address, etc,
 there is a
 safety mechanism built-in. Tie the RX pin to ground and power up OpenLCD. You should see the sp
lash screen
 then "System reset Power cycle me" and the backlight will begin to blink. Now power down OpenLC
D and remove
 the RX/GND jumper. OpenLCD is now reset to 9600bps with a I2C address of 0x72. Note: This featu
re can be
 disabled if necessary. See *Ignore Emergency Reset* for more information.
 To get this code to work, attached an OpenLCD to an Arduino Uno using the following pins:
 RX (OpenLCD) to Pin 7 (Arduino)
 VIN to 5V
 GND to GND

 Command cheat sheet:
 ASCII / DEC / HEX
 '|' / 124 / 0x7C - Put into setting mode
 Ctrl+c / 3 / 0x03 - Change width to 20
 Ctrl+d / 4 / 0x04 - Change width to 16
 Ctrl+e / 5 / 0x05 - Change lines to 4
 Ctrl+f / 6 / 0x06 - Change lines to 2
 Ctrl+g / 7 / 0x07 - Change lines to 1
 Ctrl+h / 8 / 0x08 - Software reset of the system
 Ctrl+i / 9 / 0x09 - Enable/disable splash screen
 Ctrl+j / 10 / 0x0A - Save currently displayed text as splash
 Ctrl+k / 11 / 0x0B - Change baud to 2400bps
 Ctrl+l / 12 / 0x0C - Change baud to 4800bps
 Ctrl+m / 13 / 0x0D - Change baud to 9600bps
 Ctrl+n / 14 / 0x0E - Change baud to 14400bps
 Ctrl+o / 15 / 0x0F - Change baud to 19200bps
 Ctrl+p / 16 / 0x10 - Change baud to 38400bps
 Ctrl+q / 17 / 0x11 - Change baud to 57600bps

 Ctrl+r / 18 / 0x12 - Change baud to 115200bps
 Ctrl+s / 19 / 0x13 - Change baud to 230400bps
 Ctrl+t / 20 / 0x14 - Change baud to 460800bps
 Ctrl+u / 21 / 0x15 - Change baud to 921600bps
 Ctrl+v / 22 / 0x16 - Change baud to 1000000bps
 Ctrl+w / 23 / 0x17 - Change baud to 1200bps
 Ctrl+x / 24 / 0x18 - Change the contrast. Follow Ctrl+x with number 0 to 255. 120 is default.
 Ctrl+y / 25 / 0x19 - Change the TWI address. Follow Ctrl+x with number 0 to 255. 114 (0x72) is
 default.
 Ctrl+z / 26 / 0x1A - Enable/disable ignore RX pin on startup (ignore emergency reset)
 '-' / 45 / 0x2D - Clear display. Move cursor to home position.
 / 128-157 / 0x80-0x9D - Set the primary backlight brightness. 128 = Off, 157 = 100%.
 / 158-187 / 0x9E-0xBB - Set the green backlight brightness. 158 = Off, 187 = 100%.
 / 188-217 / 0xBC-0xD9 - Set the blue backlight brightness. 188 = Off, 217 = 100%.

 For example, to change the baud rate to 115200 send 124 followed by 18.
*/

#include <SoftwareSerial.h>

SoftwareSerial OpenLCD(6, 7); //RX (not used), TX

byte counter = 0;

void setup()
{
 Serial.begin(9600); //Begin local communication for debug statements

 OpenLCD.begin(9600); //Begin communication with OpenLCD

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(158 + 0); //Set green backlight amount to 0%

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(188 + 0); //Set blue backlight amount to 0%
}

void loop()
{
 //Control red backlight
 Serial.println("Mono/Red backlight set to 0%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(128); //Set white/red backlight amount to 0%

 delay(2000);

 //Control red backlight
 Serial.println("Mono/Red backlight set to 51%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(128 + 15); //Set white/red backlight amount to 51%

 delay(2000);

 //Control red backlight

 Serial.println("Mono/Red backlight set to 100%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(128 + 29); //Set white/red backlight amount to 100%

 delay(2000);

 //The following green and blue backlight control only apply if you have an RGB backlight enabl
ed LCD

 all_off(); // turn off all backlights - see function below

 //Control green backlight
 Serial.println("Green backlight set to 51%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(158 + 15); //Set green backlight amount to 51%

 delay(2000);

 //Control green backlight
 Serial.println("Green backlight set to 100%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(158 + 29); //Set green backlight amount to 100%

 delay(2000);

 all_off(); // turn off all backlights - see function below

 //Control blue backlight
 Serial.println("Blue backlight set to 51%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(188 + 15); //Set blue backlight amount to 51%

 delay(2000);

 //Control blue backlight
 Serial.println("Blue backlight set to 100%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(188 + 29); //Set blue backlight amount to 100%

 delay(2000);

 all_off(); // turn off all backlights - see function below

}

void all_off(void)
{
 // Set all colors to 0

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(128); //Set white/red backlight amount to 0%

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(158 + 0); //Set green backlight amount to 0%

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(188 + 0); //Set blue backlight amount to 0%

 delay(2000);
}

And here is a table showing all of the available backlight settings and commands:

ASCII DEC HEX Description

n/a 128-157 0x80-0x9D Set the primary backlight brightness. 128 = Off, 157 = 100%.

n/a 158-187 0x9E-0xBB Set the green backlight brightness. 158 = Off, 187 = 100%.

n/a 188-217 0xBC-0xD9 Set the blue backlight brightness. 188 = Off, 217 = 100%.

OpenLCD Backlight Command Set

Splash Screen

These LCD screens have a splash screen by default that reads “SparkFun OpenLCD Baud:9600”. This splash
screen verifies that the unit is powered, working correctly, and that the connection to the LCD is correct. The
splash screen is displayed for 500 ms during boot-up and may be turned off if desired.

Setting Splash Screen

To make a custom splash screen, you need to send the characters you want to display (above we sent the
characters “Custom Splash Looking good!”) followed by | , then Ctrl + j). You will see a quick pop-up
message display “Flash Recorded”. Cycle power to test. You can also try out the example sketch located in the
github repo or copy and paste the code below into your Arduino IDE:

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/customflash.jpg
https://github.com/sparkfun/OpenLCD/blob/master/firmware/Examples/Serial/Example11_Serial_Splash/Example11_Serial_Splash.ino

/*
 OpenLCD is an LCD with serial/I2C/SPI interfaces.
 By: Nathan Seidle, Pete Lewis
 SparkFun Electronics
 Date: 7/26/2018
 License: This code is public domain but you buy me a beer if you use this and we meet someday
 (Beerware license).
 OpenLCD gives the user multiple interfaces (serial, I2C, and SPI) to control an LCD. SerLCD was
 the original
 serial LCD from SparkFun that ran on the PIC 16F88 with only a serial interface and limited fea
ture set.
 This is an updated serial LCD.

 This example shows how to change the Splash Screen contents. We assume the module is currently
 at default 9600bps.
 We use software serial because if OpenLCD is attached to an Arduino's hardware serial port duri
ng bootloading
 it can cause problems for both devices.
 Note: If OpenLCD gets into an unknown state or you otherwise can't communicate with it send 18
 (0x12 or ctrl+r)
 at 9600 baud while the splash screen is active and the unit will reset to 9600 baud.
 Emergency reset: If you get OpenLCD stuck into an unknown baud rate, unknown I2C address, etc,
 there is a
 safety mechanism built-in. Tie the RX pin to ground and power up OpenLCD. You should see the sp
lash screen
 then "System reset Power cycle me" and the backlight will begin to blink. Now power down OpenLC
D and remove
 the RX/GND jumper. OpenLCD is now reset to 9600bps with a I2C address of 0x72. Note: This featu
re can be
 disabled if necessary. See *Ignore Emergency Reset* for more information.
 To get this code to work, attached an OpenLCD to an Arduino Uno using the following pins:
 RX (OpenLCD) to Pin 7 (Arduino)
 VIN to 5V
 GND to GND

 Command cheat sheet:
 ASCII / DEC / HEX
 '|' / 124 / 0x7C - Put into setting mode
 Ctrl+c / 3 / 0x03 - Change width to 20
 Ctrl+d / 4 / 0x04 - Change width to 16
 Ctrl+e / 5 / 0x05 - Change lines to 4
 Ctrl+f / 6 / 0x06 - Change lines to 2
 Ctrl+g / 7 / 0x07 - Change lines to 1
 Ctrl+h / 8 / 0x08 - Software reset of the system
 Ctrl+i / 9 / 0x09 - Enable/disable splash screen
 Ctrl+j / 10 / 0x0A - Save currently displayed text as splash
 Ctrl+k / 11 / 0x0B - Change baud to 2400bps
 Ctrl+l / 12 / 0x0C - Change baud to 4800bps

 Ctrl+m / 13 / 0x0D - Change baud to 9600bps
 Ctrl+n / 14 / 0x0E - Change baud to 14400bps
 Ctrl+o / 15 / 0x0F - Change baud to 19200bps
 Ctrl+p / 16 / 0x10 - Change baud to 38400bps
 Ctrl+q / 17 / 0x11 - Change baud to 57600bps

 Ctrl+r / 18 / 0x12 - Change baud to 115200bps
 Ctrl+s / 19 / 0x13 - Change baud to 230400bps
 Ctrl+t / 20 / 0x14 - Change baud to 460800bps
 Ctrl+u / 21 / 0x15 - Change baud to 921600bps
 Ctrl+v / 22 / 0x16 - Change baud to 1000000bps
 Ctrl+w / 23 / 0x17 - Change baud to 1200bps
 Ctrl+x / 24 / 0x18 - Change the contrast. Follow Ctrl+x with number 0 to 255. 120 is default.
 Ctrl+y / 25 / 0x19 - Change the TWI address. Follow Ctrl+x with number 0 to 255. 114 (0x72) is
 default.
 Ctrl+z / 26 / 0x1A - Enable/disable ignore RX pin on startup (ignore emergency reset)
 '-' / 45 / 0x2D - Clear display. Move cursor to home position.
 / 128-157 / 0x80-0x9D - Set the primary backlight brightness. 128 = Off, 157 = 100%.
 / 158-187 / 0x9E-0xBB - Set the green backlight brightness. 158 = Off, 187 = 100%.
 / 188-217 / 0xBC-0xD9 - Set the blue backlight brightness. 188 = Off, 217 = 100%.

 For example, to change the baud rate to 115200 send 124 followed by 18.
*/

#include <SoftwareSerial.h>

SoftwareSerial OpenLCD(6, 7); //RX (not used), TX

void setup()
{
 Serial.begin(9600); //Begin local communication for debug statements

 OpenLCD.begin(9600); //Begin communication with OpenLCD

 delay(1000);

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write('-'); // clear screen

 delay(1000);

 OpenLCD.print("Custom Splash Looking good!"); // Send our new content to display - this will
 soon become our new splash screen.

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(10); //Set current contents to splash screen memory (this is also a "ctrl-j", if
 you are doing it manually)

}

void loop()
{
 // nothing here, just doing this example in setup()
}

Turning Splash Screen On/Off

To disable the splash screen, send | , then Ctrl + i . Every time this command is sent to the unit, the splash
screen display option will toggle. If the splash screen is currently being displayed, sending | , then Ctrl + i will
disable the splash screen during the next boot, and sending | , then Ctrl + i characters again will enable the

splash screen.

Serial UART: Hardware Hookup
Here’s how to setup your hardware for most of the Serial UART example code.

Note, some other examples require additional wiring (for example the contrast example requires a trimpot for
variable control). We will show Fritzing graphics for each example covered in this tutorial. For the remaining
tutorials, please look at the comments at the top of the example code for info on how to hookup the hardware.

Serial UART: Example Code - Basic
You can download the latest example code for this experiment from the github repo or you can copy and paste the
following code into your Arduino IDE:

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/LCD_Serial_basic_bb.png
https://github.com/sparkfun/OpenLCD/blob/master/firmware/Examples/Serial/Example1_Serial_Basic/Example1_Serial_Basic.ino

/*
 OpenLCD is an LCD with serial/I2C/SPI interfaces.
 By: Nathan Seidle
 SparkFun Electronics
 Date: April 19th, 2015
 License: This code is public domain but you buy me a beer if you use this and we meet someday
 (Beerware license).

 This example shows how to display a counter on the display over serial. We use software serial
 because if
 OpenLCD is attached to an Arduino's hardware serial port during bootloading it can cause probl
ems for both devices.

 To get this code to work, attached an OpenLCD to an Arduino Uno using the following pins:
 RX (OpenLCD) to Pin 7 (Arduino)
 VIN to 5V
 GND to GND

*/

#include <SoftwareSerial.h>

SoftwareSerial OpenLCD(6, 7); //RX, TX

byte counter = 0;
byte contrast = 10;

void setup()
{
 Serial.begin(9600); //Start serial communication at 9600 for debug statements
 Serial.println("OpenLCD Example Code");

 OpenLCD.begin(9600); //Start communication with OpenLCD

 //Send contrast setting
 OpenLCD.write('|'); //Put LCD into setting mode

 OpenLCD.write(24); //Send contrast command
 OpenLCD.write(contrast);

}

void loop()
{
 //Send the clear command to the display - this returns the cursor to the beginning of the disp
lay
 OpenLCD.write('|'); //Setting character
 OpenLCD.write('-'); //Clear display

 OpenLCD.print("Hello World! Counter: "); //For 16x2 LCD
 //OpenLCD.print("Hello World! Counter: "); //For 20x4 LCD
 OpenLCD.print(counter++);

 delay(250); //Hang out for a bit
}

}

Here's what you should see after uploading the code to your Arduino. Try changing the text with a different
message!

To send text to the board, wait 1/2 second (500ms) after power up for the splash screen to clear, then send text to
the display through your serial port. The display understands all of the standard ASCII characters (upper and
lowercase text, numbers, and punctuation), plus a number of graphic symbols and Japanese characters. See the
HD44780 datasheet for the full list of supported characters.

If you send data that goes past the end of the first line, it will skip to the start of the second line. If you go past the
end of the second line, the display will jump back up to the beginning of the first line.

Tip: You can simulate a scrolling window in software by copying the second line to the first line, and clearing
the second line.

Serial UART: Example Code - Contrast Control with a Trimpot
For this contrast control example, you will need to wire up a trimpot. This will allow you to adjust the contrast in
real time and find the best setting for your environment. Wire things up like this:

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/serialbasichello.jpg
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf

You can download the latest example code for this experiment from the github repo or you can copy and paste the
following code into your Arduino IDE:

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/LCD_Serial_contrast_trimpot_bb.png
https://github.com/sparkfun/OpenLCD/blob/master/firmware/Examples/Serial/Example3_Serial_Contrast_Trimpot/Example3_Serial_Contrast_Trimpot.ino

 /*
 OpenLCD is an LCD with Serial/I2C/SPI interfaces.
 By: Nathan Seidle
 SparkFun Electronics
 Date: April 19th, 2015
 License: This code is public domain but you buy me a beer if you use this and we meet someday
 (Beerware license).

 OpenLCD gives the user multiple interfaces (serial, I2C, and SPI) to control an LCD. SerLCD was
 the original
 serial LCD from SparkFun that ran on the PIC 16F88 with only a serial interface and limited fea
ture set.
 This is an updated serial LCD.

 This example shows how to change the contrast using a trimpot. We assume the module is currentl
y at
 default 9600bps.

 We use software serial because if OpenLCD is attached to an Arduino's hardware serial port duri
ng bootloading
 it can cause problems for both devices.

 Note: If OpenLCD gets into an unknown state or you otherwise can't communicate with it send 18
 (0x12 or ctrl+r)
 at 9600 baud while the splash screen is active and the unit will reset to 9600 baud.

 Emergency reset: If you get OpenLCD stuck into an unknown baud rate, unknown I2C address, etc,
 there is a
 safety mechanism built-in. Tie the RX pin to ground and power up OpenLCD. You should see the sp
lash screen
 then "System reset Power cycle me" and the backlight will begin to blink. Now power down OpenLC
D and remove
 the RX/GND jumper. OpenLCD is now reset to 9600bps with a I2C address of 0x72. Note: This featu
re can be
 disabled if necessary. See *Ignore Emergency Reset* for more information.

 To get this code to work, attached an OpenLCD to an Arduino Uno using the following pins:
 RX (OpenLCD) to Pin 7 (Arduino)
 VIN to 5V
 GND to GND

 Hook a trimpot up:
 Pin 1 - 5V
 Pin 2 - A0
 Pin 3 - GND

*/

#include <SoftwareSerial.h>

SoftwareSerial OpenLCD(6, 7); //RX (not used), TX

byte counter = 0;

void setup()
{
 Serial.begin(9600); //Start serial communication at 9600 for debug statements
 Serial.println("OpenLCD Example Code");

 OpenLCD.begin(9600); //Begin communication with OpenLCD

 //Send the reset command to the display - this forces the cursor to return to the beginning of
 the display
 OpenLCD.write('|'); //Send setting character
 OpenLCD.write('-'); //Send clear display character
 OpenLCD.print("Contrast test");

 pinMode(A0, INPUT);
}

int oldContrast = 0;
long startTime = 0;
bool settingSent = false;

void loop()
{
 int trimpot = averageAnalogRead(A0);
 int newContrast = map(trimpot, 0, 1023, 0, 255); //Map this analog value down to 0-255

 //Only send new contrast setting to display if the user changes the trimpot
 if(newContrast != oldContrast)
 {
 Serial.print("nc: ");
 Serial.println(newContrast);

 oldContrast = newContrast; //Update

 startTime = millis();
 settingSent = false;
 }

 //Wait at least 100ms for user to stop turning trimpot
 //OpenLCD displays the contrast setting for around 2 seconds so we can't send constant updates
 if(millis() - startTime > 500 && settingSent == false)
 {
 //Send contrast setting
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(24); //Send contrast command
 OpenLCD.write(newContrast);

 settingSent = true;

 Serial.print("New contrast: ");
 Serial.println(newContrast);
 }

 delay(100); //Hang out for a bit

}

//Takes an average of readings on a given pin
//Returns the average
int averageAnalogRead(byte pinToRead)
{
 byte numberOfReadings = 8;
 unsigned int runningValue = 0;

 for(int x = 0 ; x < numberOfReadings ; x++)
 runningValue += analogRead(pinToRead);
 runningValue /= numberOfReadings;

 return(runningValue);
}

After uploading your sketch, you can now try adjusting the trimpot and watch the contrast change in real time.
Here are a few examples that I see:

Contrast Setting: 0 Contrast Setting: 55

Note, if you are not seeing any text in the LCD, make sure and try rotating to either extreme. If you are up above
100, then in some cases you may not see any text. Watching your serial monitor from your Arduino can be helpful
as well. It will tell you the settings as you are sending them to the LCD. Here is some example serial debug that I
see while I adjust the trimpot:

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-03.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-04.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-05.jpg

Serial UART: Example Code - Backlight Control
For this next example, you can use the same exact hardware setup as in the previous two examples (Serial Basic
or Serial Contrast). To jump right in and start playing with backlight control, you can get the latest example code
from the github repo or you can copy and paste the following code into your Arduino IDE:

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/contrast_debug.png
https://github.com/sparkfun/OpenLCD/blob/master/firmware/Examples/Serial/Example4_Serial_Backlight/Example4_Serial_Backlight.ino

/*
 OpenLCD is an LCD with serial/I2C/SPI interfaces.
 By: Nathan Seidle
 SparkFun Electronics
 Date: April 19th, 2015
 License: This code is public domain but you buy me a beer if you use this and we meet someday
 (Beerware license).
 OpenLCD gives the user multiple interfaces (serial, I2C, and SPI) to control an LCD. SerLCD was
 the original
 serial LCD from SparkFun that ran on the PIC 16F88 with only a serial interface and limited fea
ture set.
 This is an updated serial LCD.

 This example shows how to change the backlight brightness. We assume the module is currently at
 default 9600bps.
 We use software serial because if OpenLCD is attached to an Arduino's hardware serial port duri
ng bootloading
 it can cause problems for both devices.
 Note: If OpenLCD gets into an unknown state or you otherwise can't communicate with it send 18
 (0x12 or ctrl+r)
 at 9600 baud while the splash screen is active and the unit will reset to 9600 baud.
 Emergency reset: If you get OpenLCD stuck into an unknown baud rate, unknown I2C address, etc,
 there is a
 safety mechanism built-in. Tie the RX pin to ground and power up OpenLCD. You should see the sp
lash screen
 then "System reset Power cycle me" and the backlight will begin to blink. Now power down OpenLC
D and remove
 the RX/GND jumper. OpenLCD is now reset to 9600bps with a I2C address of 0x72. Note: This featu
re can be
 disabled if necessary. See *Ignore Emergency Reset* for more information.
 To get this code to work, attached an OpenLCD to an Arduino Uno using the following pins:
 RX (OpenLCD) to Pin 7 (Arduino)
 VIN to 5V
 GND to GND

 Command cheat sheet:
 ASCII / DEC / HEX
 '|' / 124 / 0x7C - Put into setting mode
 Ctrl+c / 3 / 0x03 - Change width to 20
 Ctrl+d / 4 / 0x04 - Change width to 16
 Ctrl+e / 5 / 0x05 - Change lines to 4
 Ctrl+f / 6 / 0x06 - Change lines to 2
 Ctrl+g / 7 / 0x07 - Change lines to 1
 Ctrl+h / 8 / 0x08 - Software reset of the system
 Ctrl+i / 9 / 0x09 - Enable/disable splash screen
 Ctrl+j / 10 / 0x0A - Save currently displayed text as splash
 Ctrl+k / 11 / 0x0B - Change baud to 2400bps
 Ctrl+l / 12 / 0x0C - Change baud to 4800bps
 Ctrl+m / 13 / 0x0D - Change baud to 9600bps
 Ctrl+n / 14 / 0x0E - Change baud to 14400bps
 Ctrl+o / 15 / 0x0F - Change baud to 19200bps
 Ctrl+p / 16 / 0x10 - Change baud to 38400bps
 Ctrl+q / 17 / 0x11 - Change baud to 57600bps

 Ctrl+r / 18 / 0x12 - Change baud to 115200bps
 Ctrl+s / 19 / 0x13 - Change baud to 230400bps
 Ctrl+t / 20 / 0x14 - Change baud to 460800bps
 Ctrl+u / 21 / 0x15 - Change baud to 921600bps
 Ctrl+v / 22 / 0x16 - Change baud to 1000000bps
 Ctrl+w / 23 / 0x17 - Change baud to 1200bps
 Ctrl+x / 24 / 0x18 - Change the contrast. Follow Ctrl+x with number 0 to 255. 120 is default.
 Ctrl+y / 25 / 0x19 - Change the TWI address. Follow Ctrl+x with number 0 to 255. 114 (0x72) is
 default.
 Ctrl+z / 26 / 0x1A - Enable/disable ignore RX pin on startup (ignore emergency reset)
 '-' / 45 / 0x2D - Clear display. Move cursor to home position.
 / 128-157 / 0x80-0x9D - Set the primary backlight brightness. 128 = Off, 157 = 100%.
 / 158-187 / 0x9E-0xBB - Set the green backlight brightness. 158 = Off, 187 = 100%.
 / 188-217 / 0xBC-0xD9 - Set the blue backlight brightness. 188 = Off, 217 = 100%.

 For example, to change the baud rate to 115200 send 124 followed by 18.
*/

#include <SoftwareSerial.h>

SoftwareSerial OpenLCD(6, 7); //RX (not used), TX

byte counter = 0;

void setup()
{
 Serial.begin(9600); //Begin local communication for debug statements

 OpenLCD.begin(9600); //Begin communication with OpenLCD

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(158 + 0); //Set green backlight amount to 0%

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(188 + 0); //Set blue backlight amount to 0%
}

void loop()
{
 //Control red backlight
 Serial.println("Mono/Red backlight set to 0%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(128); //Set white/red backlight amount to 0%

 delay(2000);

 //Control red backlight
 Serial.println("Mono/Red backlight set to 51%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(128 + 15); //Set white/red backlight amount to 51%

 delay(2000);

 //Control red backlight

 Serial.println("Mono/Red backlight set to 100%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(128 + 29); //Set white/red backlight amount to 100%

 delay(2000);

 //The following green and blue backlight control only apply if you have an RGB backlight enabl
ed LCD

 all_off(); // turn off all backlights - see function below

 //Control green backlight
 Serial.println("Green backlight set to 51%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(158 + 15); //Set green backlight amount to 51%

 delay(2000);

 //Control green backlight
 Serial.println("Green backlight set to 100%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(158 + 29); //Set green backlight amount to 100%

 delay(2000);

 all_off(); // turn off all backlights - see function below

 //Control blue backlight
 Serial.println("Blue backlight set to 51%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(188 + 15); //Set blue backlight amount to 51%

 delay(2000);

 //Control blue backlight
 Serial.println("Blue backlight set to 100%");
 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(188 + 29); //Set blue backlight amount to 100%

 delay(2000);

 all_off(); // turn off all backlights - see function below

}

void all_off(void)
{
 // Set all colors to 0

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(128); //Set white/red backlight amount to 0%

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(158 + 0); //Set green backlight amount to 0%

 OpenLCD.write('|'); //Put LCD into setting mode
 OpenLCD.write(188 + 0); //Set blue backlight amount to 0%

 delay(2000);
}

With this code running, you should see your backlight colors cycle through a pattern of 0%, then 50%, then 100%.
It will show this for each color individually (Red, Green, and Blue). Here are some shots of what it looks like for me
when I run the code. Note, yours may vary slightly due to your RAW input voltage and the temperature of your
environment.

Tip: By mixing the amounts of each backlight color, you can create virtually any color you like. In the
examples above, we are trying out each backlight on its own. For other colors, try combining different values

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-06.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-07.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-08.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-09.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-10.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-11.jpg

of each backlight. For example, to make a purple, you can try RED:29, GREEN:5, and BLUE:25. To make a
yellow, try RED:22, GREEN:29, and BLUE:5. To make white, turn them all on to 29 (aka 100%).

I2C: Hardware Hookup & Example Code - Basic
For I C, there are only 2 communication lines you need to connect: SDA and CLK. But remember, these must be
3.3V logic. So if you are using a 5V Redboard like we are, then you’ll need to convert SDA and SCL from 5V to
3.3V. See the following Fritzing diagram for how you can wire this up:

After you’ve got your I C lines wired up properly, you can get the latest example code from the github repo or you
can copy and paste the following code into your Arduino IDE:

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/LCD_I2C_basic_bb.png
https://github.com/sparkfun/OpenLCD/blob/master/firmware/Examples/I2C/Example1_I2C_Basic/Example1_I2C_Basic.ino

/*
 OpenLCD is an LCD with Serial/I2C/SPI interfaces.
 By: Nathan Seidle

 SparkFun Electronics
 Date: April 19th, 2015
 License: This code is public domain but you buy me a beer if you use this and we meet someday
 (Beerware license).
 This is example code that shows how to send data over I2C to the display.
 Note: This code expects the display to be listening at the default I2C address. If your display
 is not at 0x72, you can
 do a hardware reset. Tie the RX pin to ground and power up OpenLCD. You should see the splash s
creen
 then "System reset Power cycle me" and the backlight will begin to blink. Now power down OpenLC
D and remove
 the RX/GND jumper. OpenLCD is now reset.
 To get this code to work, attached an OpenLCD to an Arduino Uno using the following pins:
 SCL (OpenLCD) to A5 (Arduino)
 SDA to A4
 VIN to 5V
 GND to GND
 Command cheat sheet:
 ASCII / DEC / HEX
 '|' / 124 / 0x7C - Put into setting mode
 Ctrl+c / 3 / 0x03 - Change width to 20
 Ctrl+d / 4 / 0x04 - Change width to 16
 Ctrl+e / 5 / 0x05 - Change lines to 4
 Ctrl+f / 6 / 0x06 - Change lines to 2
 Ctrl+g / 7 / 0x07 - Change lines to 1
 Ctrl+h / 8 / 0x08 - Software reset of the system
 Ctrl+i / 9 / 0x09 - Enable/disable splash screen
 Ctrl+j / 10 / 0x0A - Save currently displayed text as splash
 Ctrl+k / 11 / 0x0B - Change baud to 2400bps
 Ctrl+l / 12 / 0x0C - Change baud to 4800bps
 Ctrl+m / 13 / 0x0D - Change baud to 9600bps
 Ctrl+n / 14 / 0x0E - Change baud to 14400bps
 Ctrl+o / 15 / 0x0F - Change baud to 19200bps
 Ctrl+p / 16 / 0x10 - Change baud to 38400bps
 Ctrl+q / 17 / 0x11 - Change baud to 57600bps
 Ctrl+r / 18 / 0x12 - Change baud to 115200bps
 Ctrl+s / 19 / 0x13 - Change baud to 230400bps
 Ctrl+t / 20 / 0x14 - Change baud to 460800bps
 Ctrl+u / 21 / 0x15 - Change baud to 921600bps
 Ctrl+v / 22 / 0x16 - Change baud to 1000000bps
 Ctrl+w / 23 / 0x17 - Change baud to 1200bps
 Ctrl+x / 24 / 0x18 - Change the contrast. Follow Ctrl+x with number 0 to 255. 120 is default.
 Ctrl+y / 25 / 0x19 - Change the TWI address. Follow Ctrl+x with number 0 to 255. 114 (0x72) is
 default.
 Ctrl+z / 26 / 0x1A - Enable/disable ignore RX pin on startup (ignore emergency reset)
 '-' / 45 / 0x2D - Clear display. Move cursor to home position.
 / 128-157 / 0x80-0x9D - Set the primary backlight brightness. 128 = Off, 157 = 100%.
 / 158-187 / 0x9E-0xBB - Set the green backlight brightness. 158 = Off, 187 = 100%.
 / 188-217 / 0xBC-0xD9 - Set the blue backlight brightness. 188 = Off, 217 = 100%.
 For example, to change the baud rate to 115200 send 124 followed by 18.

*/

#include <Wire.h>

#define DISPLAY_ADDRESS1 0x72 //This is the default address of the OpenLCD

int cycles = 0;

void setup()
{
 Wire.begin(); //Join the bus as master

 //By default .begin() will set I2C SCL to Standard Speed mode of 100kHz
 //Wire.setClock(400000); //Optional - set I2C SCL to High Speed Mode of 400kHz

 Serial.begin(9600); //Start serial communication at 9600 for debug statements
 Serial.println("OpenLCD Example Code");

 //Send the reset command to the display - this forces the cursor to return to the beginning of
 the display
 Wire.beginTransmission(DISPLAY_ADDRESS1);
 Wire.write('|'); //Put LCD into setting mode
 Wire.write('-'); //Send clear display command
 Wire.endTransmission();
}

void loop()
{
 cycles++; //Counting cycles! Yay!
 // Serial.print("Cycle: "); //These serial.print statements take multiple miliseconds
 // Serial.println(cycles);

 i2cSendValue(cycles); //Send the four characters to the display

 delay(50); //The maximum update rate of OpenLCD is about 100Hz (10ms). A smaller delay will ca
use flicker
}

//Given a number, i2cSendValue chops up an integer into four values and sends them out over I2C
void i2cSendValue(int value)
{
 Wire.beginTransmission(DISPLAY_ADDRESS1); // transmit to device #1

 Wire.write('|'); //Put LCD into setting mode
 Wire.write('-'); //Send clear display command

 Wire.print("Cycles: ");
 Wire.print(value);

 Wire.endTransmission(); //Stop I2C transmission
}

You may notice that this is very similar to the example above, Serial Basic. Well, that’s because it is doing the
exact same thing but instead of Serial UART communication, it is sending the commands over I C. If you’ve got it
wired up correctly and the example code running, then you should see the “Hello World Counter:XX” displaying in
your LCD screen.

SPI: Hardware Hookup & Example Code - Basic
Here’s how to wire up your Redboard to talk SPI to your LCD screen. Remember, convert those logic levels to
3.3Vs! Also note, you could choose a different output pin for the csPin, but in this example we are using D10.

With your hardware now hooked up, the following code is the SPI basic example - it simply writes some characters
to the screen over SPI. It has a counter that will increment on each cycle of your main loop. It clears the screen at
the top of each loop, so you simply see “Cycles: 1”, “Cycles: 2” and so on.

You can get the latest example code from the github repo or you can copy and paste the following code into your
Arduino IDE:

2

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/LCD_SPI_basic_bb.png
https://github.com/sparkfun/OpenLCD/blob/master/firmware/Examples/SPI/Example1_SPI_Basic/Example1_SPI_Basic.ino

/*
 OpenLCD is an LCD with Serial/I2C/SPI interfaces.
 By: Nathan Seidle
 SparkFun Electronics

 Date: April 19th, 2015
 License: This code is public domain but you buy me a beer if you use this and we meet someday
 (Beerware license).

 This is example code that shows how to send data over SPI to the display.

 To get this code to work, attached an OpenLCD to an Arduino Uno using the following pins:
 CS (OpenLCD) to 10 (Arduino)
 SDI to 11
 SDO to 12 (optional)
 SCK to 13
 VIN to 5V
 GND to GND

 Command cheat sheet:
 ASCII / DEC / HEX
 '|' / 124 / 0x7C - Put into setting mode
 Ctrl+c / 3 / 0x03 - Change width to 20
 Ctrl+d / 4 / 0x04 - Change width to 16
 Ctrl+e / 5 / 0x05 - Change lines to 4
 Ctrl+f / 6 / 0x06 - Change lines to 2
 Ctrl+g / 7 / 0x07 - Change lines to 1
 Ctrl+h / 8 / 0x08 - Software reset of the system
 Ctrl+i / 9 / 0x09 - Enable/disable splash screen
 Ctrl+j / 10 / 0x0A - Save currently displayed text as splash
 Ctrl+k / 11 / 0x0B - Change baud to 2400bps
 Ctrl+l / 12 / 0x0C - Change baud to 4800bps
 Ctrl+m / 13 / 0x0D - Change baud to 9600bps
 Ctrl+n / 14 / 0x0E - Change baud to 14400bps
 Ctrl+o / 15 / 0x0F - Change baud to 19200bps
 Ctrl+p / 16 / 0x10 - Change baud to 38400bps
 Ctrl+q / 17 / 0x11 - Change baud to 57600bps
 Ctrl+r / 18 / 0x12 - Change baud to 115200bps
 Ctrl+s / 19 / 0x13 - Change baud to 230400bps
 Ctrl+t / 20 / 0x14 - Change baud to 460800bps
 Ctrl+u / 21 / 0x15 - Change baud to 921600bps
 Ctrl+v / 22 / 0x16 - Change baud to 1000000bps
 Ctrl+w / 23 / 0x17 - Change baud to 1200bps
 Ctrl+x / 24 / 0x18 - Change the contrast. Follow Ctrl+x with number 0 to 255. 120 is default.
 Ctrl+y / 25 / 0x19 - Change the TWI address. Follow Ctrl+x with number 0 to 255. 114 (0x72) is
 default.
 Ctrl+z / 26 / 0x1A - Enable/disable ignore RX pin on startup (ignore emergency reset)
 '-' / 45 / 0x2D - Clear display. Move cursor to home position.
 / 128-157 / 0x80-0x9D - Set the primary backlight brightness. 128 = Off, 157 = 100%.
 / 158-187 / 0x9E-0xBB - Set the green backlight brightness. 158 = Off, 187 = 100%.
 / 188-217 / 0xBC-0xD9 - Set the blue backlight brightness. 188 = Off, 217 = 100%.

 For example, to change the baud rate to 115200 send 124 followed by 18.
*/

#include <SPI.h>

int csPin = 10; //You can use any output pin but for this example we use 10

int cycles = 0;

void setup()
{
 pinMode(csPin, OUTPUT);
 digitalWrite(csPin, HIGH); //By default, don't be selecting OpenLCD

 SPI.begin(); //Start SPI communication
 //SPI.beginTransaction(SPISettings(100000, MSBFIRST, SPI_MODE0));
 SPI.setClockDivider(SPI_CLOCK_DIV128); //Slow down the master a bit
}

void loop()
{
 cycles++; //Counting cycles! Yay!

 //Send the clear display command to the display - this forces the cursor to return to the begi
nning of the display
 digitalWrite(csPin, LOW); //Drive the CS pin low to select OpenLCD
 SPI.transfer('|'); //Put LCD into setting mode
 SPI.transfer('-'); //Send clear display command
 digitalWrite(csPin, HIGH); //Release the CS pin to de-select OpenLCD

 char tempString[50]; //Needs to be large enough to hold the entire string with up to 5 digits
 sprintf(tempString, "Cycles: %d", cycles);
 spiSendString(tempString);

 //25ms works well
 //15ms slight flickering
 //5ms causes flickering
 delay(250);
}

//Sends a string over SPI
void spiSendString(char* data)
{
 digitalWrite(csPin, LOW); //Drive the CS pin low to select OpenLCD
 for(byte x = 0 ; data[x] != '\0' ; x++) //Send chars until we hit the end of the string
 SPI.transfer(data[x]);
 digitalWrite(csPin, HIGH); //Release the CS pin to de-select OpenLCD
}

Troubleshooting

Random Character

If the display is powered up without the RX line connected to anything, the display may fill with strange characters.
This is because the display is receiving random noise on the disconnected line. If you connect the RX line to a true
TX port, this will not happen.

Faded Characters on Display

If the display is unreadable or washed out, the contrast may need to be adjusted. This is done in software, so you
will need to send your display some contrast control commands via Serial UART, I C or SPI. There is a specific
example for each of these communication types inside the github repository here:

Example2_Serial_Contrast
Example2_I2C_Contrast
You can also follow along with the example in this tutorial above: click here.

Emergency Reset

If your LCD screen has entered an unknown state, or you are unable to communicate with it, it’s probably a good
idea to try resetting everything back to default settings. The OpenLCD firmware has a built-in “emergency reset”
feature. When the screen first boots up, the AVR on the back will watch its RX pin. If that pin is held LOW (aka tied
to ground), for 2 seconds, then it will reset all settings to default. Most importantly, your baud rate will be set back
to 9600. After the reset is complete, the screen will display the message “System Reset Power Cycle Me”, and
flicker the backlight on and off repeatedly until you cycle power.

To perform an emergency reset, please be sure to follow these exact steps in this order:

Ensure your screen is OFF.
Tie RX to GND.
Power your screen.
Wait 2 seconds. Verify “System Reset” message.
Remove connection from RX to GND.
Cycle Power.

Now, please enjoy your default settings (including 9600 baud).

Firmware Update

To update the firmware on your LCD, you can use an FTDI Basic 3.3V - beefy model and the Arduino IDE
software. The AVR on the back of your LCD actually has an Arduino-compatible bootloader. That said, it is slightly
custom in that it was compiled for the 11.0592 crystal. This means you will need to install the SparkFun AVR
Boards, and then select “Sparkfun OpenLCD” as your board type.

2

https://github.com/sparkfun/OpenLCD/blob/master/firmware/Examples/Serial/Example2_Serial_Contrast/Example2_Serial_Contrast.ino
https://github.com/sparkfun/OpenLCD/blob/master/firmware/Examples/I2C/Example2_I2C_Contrast/Example2_I2C_Contrast.ino
https://learn.sparkfun.com/tutorials/avr-based-serial-enabled-lcds-hookup-guide/serial-uart-example-code---contrast-control-with-a-trimpot
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-12.jpg
https://www.sparkfun.com/products/13746

If you’ve made it this far, presumably you have the latest version of the Arduino IDE on your desktop. If you do not,
please review our tutorial on installing the Arduino IDE.

Here’s the tutorial for installing custom board packages:

INSTALLING CUSTOM BOARD PACKAGES

Once you have that installed, you should see “SparkFun OpenLCD” as a board option from the drop down menu
here:

Now plug in your serial FTDI basic into your LCD screen.

Make sure to line it up properly so the “-” is lined up withe the “GND”, and the “R” is lined up with “DTR”.

Grab the latest firmware located here:

OPEN LCD FIRMWARE DOWNLOAD

https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/pages/CustomBoardsArduino
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/boardmenu.png
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-14.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/Serial_LCD_hookup_guide-15.jpg
https://github.com/sparkfun/OpenLCD/tree/master/firmware/OpenLCD

Note, you will need all of the files in the “https://github.com/sparkfun/OpenLCD/blob/master/firmware/OpenLCD/”
directory. When you open the OpenLCD.ino sketch in arduino, the other necessary files will open as tabs.

OpenLCD.ino
Setting_Control.ino
System_Functions.ino
settings.h

Click the UPLOAD button in the IDE (the right facing arrow), and this will get the latest code onto your LCD!

Note, any of the settings stored in EEPROM memory (like baud, splash screen contents, backlight settings, etc.)
will not be overwritten. If you are using a fresh IC (or you erased your EEPROM), then all of the defaults will return.
To reset these settings to default, you must perform an “Emergency Reset”. The instructions for this are in another
part of this troubleshooting section.

Using the Serial Enabled LCD on an Atmega32U4’s Hardware UART

If you are using the serial enabled LCD with an Atmega32U4-based Arduino (like a Pro Micro, Arduino Leonardo,
Arduino LilyPad USB, etc), you might need to add a small delay in the setup before you can get it working with the
hardware UART (pins 0 and 1). Here’s an example:

///test example using ATmega32U4's hardware UART and delay
void setup() {
 delay(2000);//add delay so the ATmega32U4 can have a second before sending serial data to the
 LCD
 Serial1.begin(9600);//set up the hardware UART baud
}

void loop() {
 Serial1.print("print something");//send something to the serial enabled LCD
 delay(50);
}

Software Serial for Arduino Due

Unfortunately, you are not able to use the serial enabled LCDs with an Arduino Due due the differences in how
change interrupts are used for the ARM processor. The software serial library is not included in the Arduino Due’s
tree:

ARDUINO.CC FORUMS - SOFTWARE SERIAL FOR ARDUINO DUE?

Try using the other hardware serial UARTs that are not connected to the Arduino Due’s programming pins for
uploading. Make sure to adjust the code for the hardware serial UART.

Resources and Going Further

https://cdn.sparkfun.com/assets/learn_tutorials/7/8/9/tabs.png
http://forum.arduino.cc/index.php?topic=142902.0

Now that you’ve successfully got your OpenLCD up and running, it’s time to incorporate it into your own project!
When it is complete (or even during the design and build phases) please share in comments section of this tutorial,
we’d love to hear about it! We also like doing project highlights, so please don’t hesitate to reach out when it’s
finished. Maybe we could even feature your project with a blog post and video!

Also, if you ran into any issues during this hookup guide, or something wasn’t crystal clear the first time you read it,
please let us know in the comments section of this tutorial. We strive to make the best documentation possible,
and really want to hear about any pain points you discovered. Thanks in advance!

For more information, check out the resources below:

OpenLCD GitHub Repo - OpenLCD design files, default firmware, and example code.
HD44780

Datasheet
LCD User-Defined Graphics - If you would like to create a custom character, you would need to send
a command byte before controlling the individual pixels in the character square.

Need some inspiration for your next project? Check out some of these related tutorials:

Graphic LCD Hookup Guide
How to add some flashy graphics to your project with a
84x48 monochrome graphic LCD.

MYST Linking Book
Create your own Linking Book from the classic
computer game, MYST

ELasto-Nightlight
Fear the dark no longer with this ELastoLite nightlight.

SparkFun Blocks for Intel® Edison - OLED
Block
A quick overview of the features of the OLED Block for
the Edison.

https://github.com/sparkfun/OpenLCD
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf
http://www.quinapalus.com/hd44780udg.html
https://learn.sparkfun.com/tutorials/graphic-lcd-hookup-guide
https://learn.sparkfun.com/tutorials/myst-linking-book
https://learn.sparkfun.com/tutorials/elasto-nightlight
https://learn.sparkfun.com/tutorials/sparkfun-blocks-for-intel-edison---oled-block-

