ISL8003xDEM01Z Demonstration Boards User Guide ## **Description** The ISL80030DEM01Z and ISL80031DEM01Z boards are intended for use by individuals with requirements for point-of-load applications sourcing from 2.7V to 5.5V. The ISL8003xDEM01Z boards are used to demonstrate the performance of the ISL80030, ISL80031 low quiescent current mode converter. These devices are offered in an 8 Ld 2mmx2mm DFN package with 1mm maximum height. The complete converter occupies less than 64mm² area. #### **Specifications** These boards have been configured and optimized for the following operating conditions: - V_{IN} = 2.7V to 5.5V - V_{OUT} = 1.8V - I_{OUT} = 3A (maximum) - · Switching frequency is 1MHz - · Up to 95% peak efficiency #### **Key Features** - · Small, compact design - V_{IN} range of 2.7V to 5.5V - I_{OUT} maximum is 3A - · Switching frequency is 1MHz - · Negative current protection - · Internal soft-start and soft-stop - · Overcurrent and short-circuit protection - · Over-temperature/thermal protection #### References ISL80030, ISL80030A, ISL80031, ISL80031A Datasheet #### **Ordering Information** | PART NUMBER | DESCRIPTION | | |----------------|-----------------------------------|--| | ISL80030DEM01Z | 3A, PWM, 1MHz demonstration board | | | ISL80031DEM01Z | 3A, PFM, 1MHz demonstration board | | FIGURE 1. BLOCK DIAGRAM #### **Test Steps** - Ensure that the circuit is correctly connected to the supply and loads prior to applying any power. - Connect the bias supply to VIN, the plus terminal to VIN (TP1) and negative return to PGND (TP2). - 3. Connect the output load to VO (TP3) and the negative return to PGND (TP4). - 4. Turn on the power supply. - 5. Verify the output voltage is 1.8V for Vour. #### **Functional Description** The ISL8003xDEM01Z boards provide a simple platform to evaluate performance of the ISL80030, ISL80031. These devices are highly efficient, monolithic, synchronous step-down DC/DC converters that can deliver up to 3A of continuous output current from a 2.7V to 5.5V input supply. They use peak current mode control architecture to allow very low duty cycle operation. The devices operate at 1MHz switching frequency, thereby providing superior transient response and allowing for the use of a small inductor. FIGURE 2. ISL80030DEM01Z TOP SIDE FIGURE 4. ISL80031DEM01Z TOP SIDE #### **PCB Layout Guidelines** The PCB layout is a very important converter design step to make sure the designed converter works well. The power loop is composed of the output inductor L's, the output capacitor COLIT, the PHASE pins and the PGND pin. It is necessary to make the power loop as small as possible and the connecting traces among them should be direct, short and wide. The switching node of the converter, the PHASE pins and the traces connected to the node are very noisy, so keep the voltage feedback trace away from these noisy traces. The input capacitor should be placed as close as possible to the VIN pin and the ground of the input and output capacitors should be connected as close as possible. The heat of the IC is mainly dissipated through the thermal pad. Maximizing the copper area connected to the thermal pad is preferable. In addition, a solid ground plane is helpful for better EMI performance. It is recommended to add at least 4 vias ground connection within the pad for the best thermal relief. FIGURE 3. ISL80030DEM01Z BOTTOM SIDE FIGURE 5. ISL80031DEM01Z BOTTOM SIDE ### ISL8003xDEM01Z Schematic FIGURE 6. ISL8003xDEM01Z SCHEMATIC ### **Bill of Materials** | QTY | UNITS | REFERENCE
DESIGNATOR | DESCRIPTION | MANUFACTURER | MANUFACTURER
PART | |-----|-------|-------------------------|---|--------------|------------------------------| | 4 | ea. | C1-C4 | CAP, SMD, 0805, 22µF, 6.3V, 20%, X5R, ROHS | TDK | C2012X5R0J226M | | 1 | ea. | C5 | CAP, SMD, 0402, 22pF, 50V, 5%, NPO, ROHS | MURATA | GRM36COG220J050AQ | | 1 | ea. | L1 | COIL-PWR INDUCTOR, SMD, 4.1mm ² , 1.0µH, 20%, 7.2A, ROHS | WE (Note 1) | 744-383560 10 | | | | | | TDK (Note 1) | SPM4020T-1R0M-LR | | 2 | ea. | TP1, TP3 | CONN-MINI TEST PT, VERTICAL, RED, ROHS | KEYSTONE | 5000 | | 2 | ea. | TP2, TP4 | CONN-MINI TEST PT, VERTICAL, BLK, ROHS | KEYSTONE | 5001 | | 1 | ea. | U1 | IC-3A, PWM, 1MHz BUCK REGULATOR, 8P, DFN, 2x2, ROHS | INTERSIL | ISL80030FRZ (ISL80030DEM01Z) | | | | | IC-3A, PFM, 1MHz BUCK REGULATOR, 8P, DFN, 2x2, ROHS | INTERSIL | ISL80031FRZ (ISL80031DEM01Z) | | 2 | ea. | R2, R7 | RES, SMD, 0402, 100k, 1/16W, 1%, TF, ROHS | PANASONIC | ERJ2RKF1003 | | 1 | ea. | R1 | RES, SMD, 0402, 200k, 1/16W, 1%, TF, ROHS | ROHM | MCR01MZPF2003 | | 0 | ea. | R8 | RES, SMD, 0402, DNP, DNP, DNP, TF, ROHS | | | #### NOTE: ^{1.} Two manufacturers are provided as options for the inductor. # **Board Layout** FIGURE 7. SILKSCREEN TOP FIGURE 9. LAYER 2 FIGURE 11. LAYER 4 FIGURE 8. LAYER 1 FIGURE 10. LAYER 3 FIGURE 12. SILKSCREEN BOTTOM # **Typical Performance Curves** FIGURE 13. EFFICIENCY vs LOAD $f_{SW} = 1MHz$, $V_{IN} = 5V$, PFM, $T_A = +25$ °C FIGURE 14. START-UP AT 3A LOAD $V_{\text{IN}} = 5\text{V, PWM, T}_{\text{A}} = +25\,^{\circ}\text{C}$ FIGURE 15. SHUTDOWN AT 3A LOAD $V_{IN} = 5V, PWM, T_A = +25 ^{\circ}C$ FIGURE 16. OVERCURRENT PROTECTION $V_{IN} = 5V$, PWM, $T_A = +25$ °C Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the document is current before proceeding.