
Adafruit RFM69HCW and RFM9X LoRa Packet Radio Breakouts
Created by lady ada

Last updated on 2017-04-03 04:21:12 AM UTC

2
4
9
9

10
11
12
14
14
15
16

17
18

20
23
28
30
31
31
31

32
32
33
36
36
37
37
38
39

40
41
45
45

Guide Contents

Guide Contents
Overview
Pinouts
Power Pins
SPI Logic pins:
Radio GPIO
Antenna Connection
Assembly

Prepare the header strip:
Add the breakout board:
And Solder!

Antenna Options
Wire Antenna

uFL Connector
SMA Edge-Mount Connector
Wiring
Using the RFM69 Radio
"Raw" vs Packetized
Arduino Libraries

RadioHead Library example

Basic RX & TX example
Basic Transmitter example code
Basic receiver example code
Radio Freq. Config
Configuring Radio Pinout
Setup
Initializing Radio
Basic Transmission Code
Basic Receiver Code

Basic Receiver/Transmitter Demo w/OLED
Addressed RX and TX Demo
RFM9X Test
Arduino Library

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 2 of 61

46

46
46
49

53
53
54
54
55
55

57
57
57
58
60

RadioHead RFM9x Library example

Basic RX & TX example
Transmitter example code
Receiver example code

Radio Pinout
Frequency
Setup

Initializing Radio
Transmission Code
Receiver Code

Downloads
Datasheets & Files
Schematic
Fabrication Print
Radio Range F.A.Q.

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 3 of 61

Overview
"You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and
his head is meowing in Los Angeles. Do you understand this? And radio operates exactly
the same way: you send signals here, they receive them there. The only difference is that
there is no cat."

Sending data over long distances is like magic, and now you can be a magician with this
range of powerful and easy-to-use radio modules. Sure, sometimes you want to talk to a
computer (a good time to use WiFi) or perhaps communicate with a Phone (choose
Bluetooth Low Energy!) but what if you want to send data very far? Most WiFi, Bluetooth,
Zigbee and other wireless chipsets use 2.4GHz, which is great for high speed transfers. If
you aren't so concerned about streaming a video, you can use a lower license-free ISM
frequency bands (http://adafru.it/mOE) such as 433MHz in ITU Europe or 900 MHz in ITU
Americas. You can't send data as fast but you can send data a lot farther.

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 4 of 61

https://en.wikipedia.org/wiki/ISM_band

Also, these packet radios are simpler than WiFi or BLE, you dont have to associate, pair,
scan, or worry about connections. All you do is send data whenever you like, and any other
modules tuned to that same frequency (and, with the same encryption key) will receive.
The receiver can then send a reply back. The modules do packetization, error correction
and can also auto-retransmit so its not like you have worry about everything but less power
is wasted on maintaining a link or pairing.

These modules are great for use with Arduinos or other microcontrollers, say if you want a
sensor node nework or transmit data over a campus or town. The trade off is you need two
or more radios, with matching frequencies. WiFi and BT, on the other hand, are commonly
included in computers and phones.

These radio modules come in four variants (two modulation types and two frequencies)
The RFM69's are easiest to work with, and are well known and understood. The LoRa
radios are exciting and more powerful but also more expensive.

All variants are:

Packet radio with ready-to-go Arduino libraries
Uses the amateur or license-free ISM bands (http://adafru.it/mOE): 433MHz is ITU
"Europe" license-free ISM or ITU "American" amateur with limitations. 900MHz is
license free ISM for ITU "Americas"
Use a simple wire antenna or spot for uFL or SMA radio connector

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 5 of 61

https://en.wikipedia.org/wiki/ISM_band

RFM69HCW in either 433 MHz or 868/915MHz

These are +20dBm FSK packet radios that have a lot of nice extras in them such as
encryption and auto-retransmit. They can go about 200-500 meters line-of-sight using
simple wire antennas, probably up to 5Km with well-tuned directional antennas, perfect line-
of-sight, and settings tweakings

SX1231 based module with SPI interface
+13 to +20 dBm up to 100 mW Power Output Capability (power output selectable in
software)
50mA (+13 dBm) to 150mA (+20dBm) current draw for transmissions, ~30mA during
active radio listening.
The RFM69 radios have a range of approx. 500 meters line of sight with tuned uni-
directional antennas. Depending on obstructions, frequency, antenna and power
output, you will get lower ranges - especially if you are not line of sight.
Create multipoint networks with individual node addresses
Encrypted packet engine with AES-128

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 6 of 61

RFM9x LoRa in either 433 MHz or 868/915MHz

These are +20dBm LoRa packet radios that have a special radio modulation that is not
compatible with the RFM69s but can go much much farther. They can easily go 2 Km line of
sight using simple wire antennas, or up to 20Km with directional antennas and settings
tweakings

SX1276 LoRa® based module with SPI interface
+5 to +20 dBm up to 100 mW Power Output Capability (power output selectable in
software)
~100mA peak during +20dBm transmit, ~30mA during active radio listening.
The RFM9x radios have a range of approx. 2 km line of sight with tuned uni-
directional antennas. Depending on obstructions, frequency, antenna and power
output, you will get lower ranges - especially if you are not line of sight.

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 7 of 61

All radios are sold individually and can only talk to radios of the same part number. E.g.
RFM69 900 MHz can only talk to RFM69 900 MHz, LoRa 433 MHz can only talk to LoRa
433, etc.

Each radio comes with some header, a 3.3V voltage regulator and levelshifter that can
handle 3-5V DC power and logic so you can use it with 3V or 5V devices. Some soldering is
required to attach the header. You will need to cut and solder on a small piece of wire (any
solid or stranded core is fine) in order to create your antenna. Optionally you can pick up a
uFL or SMA edge-mount connector and attach an external duck.

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 8 of 61

Pinouts

Both RFM69 and RFM9x LoRa breakouts have the exact same pinouts. The silkscreen will
say RFM69HCW or LoRa depending on which variant you have. If there's a green or blue
dot on top of the module, its 900 MHz. If there's a red dot, its 433 MHz

Power Pins

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 9 of 61

The left-most pins are used for power

Vin - power in. This is regulated down to 3.3V so you can use 3.3-6VDC in. Make
sure it can supply 150mA since the peak radio currents can be kinda high
GND - ground for logic and power
EN - connected to the enable pin of the regulator. Pulled high to Vin by default, pull
low to completely cut power to the radio.

SPI Logic pins:

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 10 of 61

All pins going into the breakout have level shifting circuitry to make them 3-5V logic level
safe. Use whatever logic level is on Vin!

SCK - This is the SPI Clock pin, its an input to the chip
MISO - this is the Master In Slave Out pin, for data sent from the radio to your
processor, 3.3V logic level
MOSI - this is the Master Out Slave In pin, for data sent from your processor to the
radio
CS - this is the Chip Select pin, drop it low to start an SPI transaction. Its an input to
the chip
RST - this is the Reset pin for the radio. It's pulled high by default. Pull down to
ground to put it into reset
G0 - the radio's "GPIO 0" pin, also known as the IRQ pin, used for interrupt request
notification from the radio to the microcontroller, 3.3V logic level

Radio GPIO

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 11 of 61

The radio's have another 5 GPIO pins that can be used for various notifications or radio
functions. These aren't used for the majority of uses but are available in case you want
them! All are 3.3V logic with no level shifting

Antenna Connection
This three-way connection lets you select which kind of Antenna you'd like, from the lowest
cost wire dipole to the fanciest SMA

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 12 of 61

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 13 of 61

Assembly

Prepare the header
strip:

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 14 of 61

Cut the strip to length if
necessary. It will be easier to
solder if you insert it into a
breadboard - long pins down

Add the breakout
board:

Place the breakout board over
the pins so that the short pins
poke through the breakout pads

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 15 of 61

https://learn.adafruit.com/assets/31728
https://learn.adafruit.com/assets/31729

And Solder!

Be sure to solder all pins for
reliable electrical contact.

(For tips on soldering, be sure to
check out our Guide to Excellent
Soldering (http://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 16 of 61

https://learn.adafruit.com/assets/31730
https://learn.adafruit.com/assets/31731
https://learn.adafruit.com/assets/31732
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder
joints visually and continue onto
the next steps

Antenna Options

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 17 of 61

https://learn.adafruit.com/assets/31733
https://learn.adafruit.com/assets/31734

These radio breakouts do not have a built-in antenna. Instead, you have three options for
attaching an antenna. For most low cost radio nodes, a wire works great. If you need to put
the radio into an enclosure, soldering in uFL and using a uFL to SMA adapter will let you
attach an external antenna. You can also solder an SMA edge-mount connector directly

Wire Antenna

A wire antenna, aka "quarter wave whip antenna" is low cost and works very well! You just
have to cut the wire down to the right length.

Cut a stranded or solid core wire
the the proper length for the
module/frequency

433 MHz - 6.5 inches, or
16.5 cm
868 MHz - 3.25 inches or
8.2 cm
915 MHz - 3 inches or 7.8
cm

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 18 of 61

https://learn.adafruit.com/assets/31735

Strip a mm or two off the end of
the wire, tin and solder into the
ANT pad.

That's pretty much it, you're
done!

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 19 of 61

https://learn.adafruit.com/assets/31736
https://learn.adafruit.com/assets/31739
https://learn.adafruit.com/assets/31738

uFL Connector
If you want an external antenna that is a few inches away from the radio, you need to do a
tiny bit more work but its not too difficult.

You'll need to get an SMT uFL connector, these are fairly standard (http://adafru.it/1661)

You'll also need a uFL to SMA adapter (http://adafru.it/851) (or whatever adapter you need
for the antenna you'll be using, SMA is the most common

Of course, you will also need an antenna of some sort, that matches your radio frequency

uFL connectors are rated for 30 connection cycles, but be careful when
connecting/disconnecting to not rip the pads off the PCB. Once a uFL/SMA adapter is
connected, use strain relief!

Check the bottom of the uFL
connector, note that there's two
large side pads (ground) and a
little inlet pad. The other small
pad is not used!

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 20 of 61

https://www.adafruit.com/products/1661
https://www.adafruit.com/products/851
https://learn.adafruit.com/assets/31746

Put down a touch of solder on
the signal pad

Solder in the first pad while
holding the uFL steady

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 21 of 61

https://learn.adafruit.com/assets/31747
https://learn.adafruit.com/assets/31749

Solder in the two side pads, they
are used for signal and
mechanical connectivity so make
sure there's plenty of solder

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 22 of 61

https://learn.adafruit.com/assets/31750
https://learn.adafruit.com/assets/31751

Once done, check your work
visually

Once done attach your uFL
adapter and antenna!

SMA Edge-Mount Connector
OK so

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 23 of 61

https://learn.adafruit.com/assets/31752
https://learn.adafruit.com/assets/31753

You'll need an SMA (or, if you
need RP-SMA for some reason)
Edge-Mount connector with
1.6mm spacing

The SMA connector 'slides on'
the top of the PCB

Once lined up, solder the center
contact first

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 24 of 61

https://learn.adafruit.com/assets/31754
https://learn.adafruit.com/assets/31755

Solder in the two side ground
pads. Note you will need a lot of
heat for this, because the
connector is an excellent heat
sink and its got a huge ground
plane

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 25 of 61

https://learn.adafruit.com/assets/31756
https://learn.adafruit.com/assets/31757
https://learn.adafruit.com/assets/31758

Flip over and also do the other
side ground/mechanical contacts

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 26 of 61

https://learn.adafruit.com/assets/31760
https://learn.adafruit.com/assets/31761

Attach on your antenna, you're
done!

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 27 of 61

https://learn.adafruit.com/assets/31762
https://learn.adafruit.com/assets/31763

Wiring

rfm69.fzz
http://adafru.it/vhb

Wiring up the radio in SPI mode is pretty easy as there's not that many pins! The library
requires hardware SPI and does not have software SPI support so you must use the
hardware SPI port! Start by connecting the power pins

Vin connects to the Arduino 5V pin. If you're using a 3.3V Arduino, connect to 3.3V
GND connects to Arduino ground
CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digital
13. On Mega's, its Digital 52 and on Leonardo/Due its ICSP-3 (See SPI Connections
for more details (http://adafru.it/d5h))
MISO connects to SPI MISO. On Arduino Uno/Duemilanove/328-based, thats Digital
12. On Mega's, its Digital 50 and on Leonardo/Due its ICSP-1 (See SPI Connections
for more details (http://adafru.it/d5h))

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 28 of 61

https://cdn-learn.adafruit.com/assets/assets/000/040/616/original/rfm69.fzz?1491192532
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Digital
11. On Mega's, its Digital 51 and on Leonardo/Due its ICSP-4 (See SPI Connections
for more details (http://adafru.it/d5h))
CS connects to our SPI Chip Select pin. We'll be using Digital 4 but you can later
change this to any pin
RST connects to our radio reset pin. We'll be using Digital 2 but you can later change
this pin too.
G0 (IRQ) connects to an interrupt-capable pin. We'll be using Digital 3 but you can
later change this pin too. However, it must connect a hardware Interrupt pin. Not
all pins can do this! Check the board documentation for which pins are hardware
interrupts, you'll also need the hardware interrupt number. For example, on UNO
digital 3 is interrupt #1

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 29 of 61

http://arduino.cc/en/Reference/SPI

Using the RFM69 Radio

This page is shared between the
RFM69 breakout and the all-in-
one Feather RFM69's. The
example code and overall
functionality is the same, only the
pinouts used may differ! Just
make sure the example code is
using the pins you have wired up.

Before beginning make sure you have your Arduino or Feather working smoothly, it will
make this part a lot easier. Once you have the basic functionality going - you can upload
code, blink an LED, use the serial output, etc. you can then upgrade to using the radio
itself.

Note that the sub-GHz radio is not designed for streaming audio or video! It's best used for
small packets of data. The data rate is adjustbale but its common to stick to around 19.2
Kbps (thats bits per second). Lower data rates will be more successful in their

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 30 of 61

https://learn.adafruit.com/assets/40611
https://learn.adafruit.com/assets/40612

transmissions

You will, of course, need at least two paired radios to do any testing! The radios must
be matched in frequency (e.g. 900 MHz & 900 MHz are ok, 900 MHz & 433 MHz are not).
They also must use the same encoding schemes, you cannot have a 900 MHz RFM69
packet radio talk to a 900 MHz RFM9x LoRa radio.

"Raw" vs Packetized
The SX1231 can be used in a 'raw rx/tx' mode where it just modulates incoming bits from
pin #2 and sends them on the radio, however there's no error correction or addressing so
we wont be covering that technique.

Instead, 99% of cases are best off using packetized mode. This means you can set up a
recipient for your data, error correction so you can be sure the whole data set was
transmitted correctly, automatic re-transmit retries and return-receipt when the packet was
delivered. Basically, you get the transparency of a data pipe without the annoyances of
radio transmission unreliability

Arduino Libraries
These radios have really great libraries already written, so rather than coming up with a
new standard we suggest using existing libraries such as LowPowerLab's RFM69
Library (http://adafru.it/mCz) and AirSpayce's Radiohead library (http://adafru.it/mCA) which
also suppors a vast number of other radios

These are really great Arduino Libraries, so please support both companies in thanks for
their efforts!

We recommend using the Radiohead library - it is very cross-platform friendly and used a
lot in the community!

RadioHead Library example

To begin talking to the radio, you will need to download our small fork of the Radiohead
from our github repository (http://adafru.it/vgE). You can do that by visiting the github repo
and manually downloading or, easier, just click this button to download the zip

Download RadioHead Library
http://adafru.it/vgF

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 31 of 61

https://github.com/LowPowerLab/RFM69
http://www.airspayce.com/mikem/arduino/RadioHead/
https://github.com/adafruit/RadioHead
https://github.com/adafruit/RadioHead/archive/master.zip

Rename the uncompressed folder RadioHead and check that the RadioHead folder
contains files like RH_RFM69.cpp and RH_RFM69.h (and many others!)

Place the RH_RFM69 library folder your arduinosketchfolder/libraries/ folder.
You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (http://adafru.it/aYM)

Basic RX & TX example
Lets get a basic demo going, where one radio transmits and the other receives. We'll start
by setting up the transmitter

Basic Transmitter example code

This code will send a small packet of data once a second to another RFM69 radio, without
any addressing.

Open up the example RadioHead -> feather -> RadioHead69_RawDemo_TX

Load this code into your Transmitter Arduino or Feather!

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 32 of 61

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Before uploading, check for the #define FREQUENCY RF69_915MHZ line and comment
that out (and uncomment the line above) to match the frequency of the hardware you're
using
These examples are optimized for the Feather 32u4/M0. If you're using differnet wiring,
uncomment/comment/edit the sections defining the pins depending on which chipset and
wiring you are using! The pins used will vary depending on your setup!

Once uploaded you should see the following on the serial console

Now open up another instance of the Arduino IDE - this is so you can see the serial
console output from the TX device while you set up the RX device.

Basic receiver example code

This code will receive and reply with a small packet of data.

Open up the example RadioHead -> feather -> RadioHead69_RawDemo_RX

Load this code into your Receiver Arduino/Feather!

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 33 of 61

Before uploading, check for the #define FREQUENCY RF69_915MHZ line and comment
that out (and uncomment the line above) to match the frequency of the hardware you're
using
These examples are optimized for the Feather 32u4/M0. If you're using differnet wiring,
uncomment/comment/edit the sections defining the pins depending on which chipset and
wiring you are using! The pins used will vary depending on your setup!

Now open up the Serial console on the receiver, while also checking in on the transmitter's
serial console. You should see the receiver is...well, receiving packets

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 34 of 61

And, on the transmitter side, it is now printing Got Reply after each transmisssion because
it got a reply from the receiver

That's pretty much the basics of it! Lets take a look at the examples so you know how to
adapt to your own radio network

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 35 of 61

Radio Freq. Config

Each radio has a frequency that is configurable in software. You can actually tune outside
the recommended frequency, but the range won't be good. 900 MHz can be tuned from
about 850-950MHz with good performance. 433 MHz radios can be tuned from 400-460
MHz or so.

// Change to 434.0 or other frequency, must match RX's freq!
#define RF69_FREQ 915.0

For all radios they will need to be on the same frequency. If you have a 433MHz radio you
will want to stick to 433. If you have a 900 Mhz radio, go with 868 or 915MHz, just make
sure all radios are on the same frequency

Configuring Radio Pinout

At the top of the sketch you can also set the pinout. The radios will use hardware SPI, but
you can select any pins for RFM69_CS (an output), RFM_IRQ (an input) and RFM_RST
(an output). RFM_RST is manually used to reset the radio at the beginning of the sketch.
RFM_IRQ must be an interrupt-capable pin. Check your board to determine which pins you
can use!

Also, an LED is defined.

For example, here is the Feather 32u4 pinout

#if defined (__AVR_ATmega32U4__) // Feather 32u4 w/Radio
 #define RFM69_CS 8
 #define RFM69_INT 7
 #define RFM69_RST 4
 #define LED 13
#endif

If you're using a Feather M0, the pinout is slightly different:

#if defined(ARDUINO_SAMD_FEATHER_M0) // Feather M0 w/Radio
 #define RFM69_CS 8
 #define RFM69_INT 3
 #define RFM69_RST 4
 #define LED 13
#endif

If you're using an Arduino UNO or compatible, we recommend:

#if defined (__AVR_ATmega328P__) // UNO or Feather 328P w/wing
 #define RFM69_INT 3 //

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 36 of 61

 #define RFM69_CS 4 //
 #define RFM69_RST 2 // "A"
 #define LED 13
#endif

If you're using a FeatherWing or different setup, you'll have to set up the #define statements
to match your wiring

You can then instantiate the radio object with our custom pin numbers. Note that the IRQ is
defined by the IRQ pin not number (sometimes they differ).

// Singleton instance of the radio driver
RH_RF69 rf69(RFM69_CS, RFM69_INT);

Setup

We begin by setting up the serial console and hard-resetting the RFM69

void setup()
{
 Serial.begin(115200);
 //while (!Serial) { delay(1); } // wait until serial console is open, remove if not tethered to computer

 pinMode(LED, OUTPUT);
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, LOW);

 Serial.println("Feather RFM69 RX Test!");
 Serial.println();

 // manual reset
 digitalWrite(RFM69_RST, HIGH);
 delay(10);
 digitalWrite(RFM69_RST, LOW);
 delay(10);

If you are using a board with 'native USB' make sure the while (!Serial) line is commented
out if you are not tethering to a computer, as it will cause the microcontroller to halt until a
USB connection is made!

Initializing Radio

Once initialized, you can set up the frequency, transmission power, radio type and
encryption key.

For the frequency, we set it already at the top of the sketch

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 37 of 61

For transmission power you can select from 14 to 20 dBi. Lower numbers use less power,
but have less range. The second argument to the function is whether it is an HCW type
radio, with extra amplifier. This should always be set to true!

Finally, if you are encrypting data transmission, set up the encryption key

 if (!rf69.init()) {
 Serial.println("RFM69 radio init failed");
 while (1);
 }
 Serial.println("RFM69 radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM (for low power module)
 // No encryption
 if (!rf69.setFrequency(RF69_FREQ)) {
 Serial.println("setFrequency failed");
 }

 // If you are using a high power RF69 eg RFM69HW, you *must* set a Tx power with the
 // ishighpowermodule flag set like this:
 rf69.setTxPower(20, true); // range from 14-20 for power, 2nd arg must be true for 69HCW

 // The encryption key has to be the same as the one in the server
 uint8_t key[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
 rf69.setEncryptionKey(key);

Basic Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a packet with
"Hello World #" and an incrementing packet number, then check for a reply

void loop() {
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!

 char radiopacket[20] = "Hello World #";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);

 // Send a message!
 rf69.send((uint8_t *)radiopacket, strlen(radiopacket));
 rf69.waitPacketSent();

 // Now wait for a reply
 uint8_t buf[RH_RF69_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf69.waitAvailableTimeout(500)) {
 // Should be a reply message for us now

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 38 of 61

 if (rf69.recv(buf, &len)) {
 Serial.print("Got a reply: ");
 Serial.println((char*)buf);
 Blink(LED, 50, 3); //blink LED 3 times, 50ms between blinks
 } else {
 Serial.println("Receive failed");
 }
 } else {
 Serial.println("No reply, is another RFM69 listening?");
 }
}

Its pretty simple, the delay does the waiting, you can replace that with low power sleep
code. Then it generates the packet and appends a number that increases every tx. Then it
simply calls send() waitPacketSent() to wait until is is done transmitting.

It will then wait up to 500 milliseconds for a reply from the receiver with
waitAvailableTimeout(500). If there is a reply, it will print it out. If not, it will complain nothing was
received. Either way the transmitter will continue the loop and sleep for a second until the
next TX.

Basic Receiver Code

The Receiver has the same exact setup code, but the loop is different

void loop() {
 if (rf69.available()) {
 // Should be a message for us now
 uint8_t buf[RH_RF69_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (rf69.recv(buf, &len)) {
 if (!len) return;
 buf[len] = 0;
 Serial.print("Received [");
 Serial.print(len);
 Serial.print("]: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf69.lastRssi(), DEC);

 if (strstr((char *)buf, "Hello World")) {
 // Send a reply!
 uint8_t data[] = "And hello back to you";
 rf69.send(data, sizeof(data));
 rf69.waitPacketSent();
 Serial.println("Sent a reply");
 Blink(LED, 40, 3); //blink LED 3 times, 40ms between blinks
 }
 } else {

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 39 of 61

 Serial.println("Receive failed");
 }
 }
}

Instead of transmitting, it is constantly checking if there's any data packets that have been
received. available() will return true if a packet with the proper encryption has been received.
If so, the receiver prints it out.

It also prints out the RSSI which is the receiver signal strength indicator. This number will
range from about -15 to -80. The larger the number (-15 being the highest you'll likely see)
the stronger the signal.

If the data contains the text "Hello World" it will also reply to the packet.

Once done it will continue waiting for a new packet

Basic Receiver/Transmitter Demo w/OLED
OK once you have that going you can try this example,
RadioHead69_RawDemoTXRX_OLED. We're using the Feather with an OLED wing but in
theory you can run the code without the OLED and connect three buttons to GPIO #9, 6,
and 5 on the Feathers. Upload the same code to each Feather. When you press buttons on
one Feather they will be printed out on the other one, and vice versa. Very handy for
testing bi-directional communication!

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 40 of 61

This demo code shows how you can listen for packets and also check for button presses
(or sensor data or whatever you like) and send them back and forth between the two radios!

Addressed RX and TX Demo
OK so the basic demo is well and good but you have to do a lot of management of the
connection to make sure packets were received. Instead of manually sending
acknowledgements, you can have the RFM69 and library do it for you! Thus the Reliable
Datagram part of the RadioHead library.

Load up the RadioHead69_AddrDemo_RX and RadioHead69_AddrDemo_TX sketches
to each of your boards

Don't forget to check the frequency set in the example, and that the pinouts match your
wiring!!!

This example lets you have many 'client' RFM69's all sending data to one 'server'

Each client can have its own address set, as well as the server address. See this code at
the beginning:

// Where to send packets to!
#define DEST_ADDRESS 1
// change addresses for each client board, any number :)
#define MY_ADDRESS 2

For each client, have a unique MY_ADDRESS. Then pick one server that will be address
#1

Once you upload the code to a client, you'll see the following in the serial console:

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 41 of 61

Because the data is being sent to address #1, but #1 is not acknowledging that data.

If you have the server running, with no clients, it will sit quietly:

Turn on the client and you'll see acknowledged packets!

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 42 of 61

And the server is also pretty happy

The secret sauce is the addition of this new object:

// Class to manage message delivery and receipt, using the driver declared above
RHReliableDatagram rf69_manager(rf69, MY_ADDRESS);

Which as you can see, is the manager for the RFM69. In setup() you'll need to init it,
although you still configure the underlying rfm69 like before:

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 43 of 61

 if (!rf69_manager.init()) {
 Serial.println("RFM69 radio init failed");
 while (1);
 }

And when transmitting, use sendToWait which will wait for an ack from the recepient (at
DEST_ADDRESS)

 if (rf69_manager.sendtoWait((uint8_t *)radiopacket, strlen(radiopacket), DEST_ADDRESS)) {

on the 'other side' use the recvFromAck which will receive and acknowledge a packet

 // Wait for a message addressed to us from the client
 uint8_t len = sizeof(buf);
 uint8_t from;
 if (rf69_manager.recvfromAck(buf, &len, &from)) {

That function will wait forever. If you'd like to timeout while waiting for a packet, use
recvfromAckTimeout which will wait an indicated # of milliseconds

if (rf69_manager.recvfromAckTimeout(buf, &len, 2000, &from))

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 44 of 61

RFM9X Test

Note that the sub-GHz radio is not designed for streaming audio or video! It's best used for
small packets of data. The data rate is adjustbale but its common to stick to around 19.2
Kbps (thats bits per second). Lower data rates will be more successful in their
transmissions

You will, of course, need at least two paired radios to do any testing! The radios must
be matched in frequency (e.g. 900 MHz & 900 MHz are ok, 900 MHz & 433 MHz are not).
They also must use the same encoding schemes, you cannot have a 900 MHz RFM69
packet radio talk to a 900 MHz RFM96 LoRa radio.

Arduino Library

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 45 of 61

These radios have really excellent code already written, so rather than coming up with a
new standard we suggest using existing libraries such as AirSpayce's Radiohead
library (http://adafru.it/mCA) which also suppors a vast number of other radios

This is a really great Arduino Library, so please support them in thanks for their efforts!

RadioHead RFM9x Library example

To begin talking to the radio, you will need to download the RadioHead
library (http://adafru.it/mCA). You can do that by visiting the github repo and manually
downloading or, easier, just click this button to download the zip corresponding to version
1.59

Note that while all the code in the examples below are based on this version you can visit
the RadioHead documentation page to get the most recent version which may have bug-
fixes or more functionality (http://adafru.it/mCA)

Download RadioHead v1.59
http://adafru.it/mHC

Uncompress the zip and find the folder named RadioHead and check that the RadioHead
folder contains RH_RF95.cpp and RH_RF95.h (as well as a few dozen other files for radios
that are supported)

Place the RadioHead library folder your arduinosketchfolder/libraries/ folder.
You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (http://adafru.it/aYM)

Basic RX & TX example
Lets get a basic demo going, where one Arduino transmits and the other receives. We'll
start by setting up the transmitter

Transmitter example code

This code will send a small packet of data once a second to node address #1

Load this code into your Transmitter Arduino!

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 46 of 61

http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/
https://cdn-learn.adafruit.com/assets/assets/000/031/670/original/RadioHead-1.59.zip?1460574831
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

// LoRa 9x_TX
// -*- mode: C++ -*-
// Example sketch showing how to create a simple messaging client (transmitter)
// with the RH_RF95 class. RH_RF95 class does not provide for addressing or
// reliability, so you should only use RH_RF95 if you do not need the higher
// level messaging abilities.
// It is designed to work with the other example LoRa9x_RX

#include <SPI.h>
#include <RH_RF95.h>

#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 2

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

void setup()
{
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial);
 Serial.begin(9600);
 delay(100);

 Serial.println("Arduino LoRa TX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 47 of 61

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);
}

int16_t packetnum = 0; // packet counter, we increment per xmission

void loop()
{
 Serial.println("Sending to rf95_server");
 // Send a message to rf95_server

 char radiopacket[20] = "Hello World # ";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);
 radiopacket[19] = 0;

 Serial.println("Sending..."); delay(10);
 rf95.send((uint8_t *)radiopacket, 20);

 Serial.println("Waiting for packet to complete..."); delay(10);
 rf95.waitPacketSent();
 // Now wait for a reply
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 Serial.println("Waiting for reply..."); delay(10);
 if (rf95.waitAvailableTimeout(1000))
 {
 // Should be a reply message for us now
 if (rf95.recv(buf, &len))
 {
 Serial.print("Got reply: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);
 }
 else
 {
 Serial.println("Receive failed");
 }
 }
 else
 {
 Serial.println("No reply, is there a listener around?");
 }
 delay(1000);
}

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 48 of 61

Once uploaded you should see the following on the serial console

Now open up another instance of the Arduino IDE - this is so you can see the serial
console output from the TX Arduino while you set up the RX Arduino.

Receiver example code

This code will receive and acknowledge a small packet of data.

Load this code into your Receiver Arduino!

// Arduino9x_RX
// -*- mode: C++ -*-
// Example sketch showing how to create a simple messaging client (receiver)
// with the RH_RF95 class. RH_RF95 class does not provide for addressing or
// reliability, so you should only use RH_RF95 if you do not need the higher
// level messaging abilities.
// It is designed to work with the other example Arduino9x_TX

#include <SPI.h>
#include <RH_RF95.h>

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 49 of 61

#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 2

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

// Blinky on receipt
#define LED 13

void setup()
{
 pinMode(LED, OUTPUT);
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial);
 Serial.begin(9600);
 delay(100);

 Serial.println("Arduino LoRa RX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);
}

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 50 of 61

void loop()
{
 if (rf95.available())
 {
 // Should be a message for us now
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))
 {
 digitalWrite(LED, HIGH);
 RH_RF95::printBuffer("Received: ", buf, len);
 Serial.print("Got: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);

 // Send a reply
 uint8_t data[] = "And hello back to you";
 rf95.send(data, sizeof(data));
 rf95.waitPacketSent();
 Serial.println("Sent a reply");
 digitalWrite(LED, LOW);
 }
 else
 {
 Serial.println("Receive failed");
 }
 }
}

Now open up the Serial console on the receiver, while also checking in on the transmitter's
serial console. You should see the receiver is...well, receiving packets

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 51 of 61

You can see that the library example prints out the hex-bytes received 48 65 6C 6C 6F 20 57 6F

72 6C 64 20 23 30 0 20 20 20 20 0, as well as the ASCII 'string' Hello World. Then it will send a
reply.

And, on the transmitter side, it is now printing that it got a reply after each transmisssion And

hello back to you because it got a reply from the receiver

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 52 of 61

That's pretty much the basics of it! Lets take a look at the examples so you know how to
adapt to your own radio setup

Radio Pinout
This is the pinout setup - you can change around the reset and CS pins to any pin. the IRQ
pin should be an interrupt pin. On an UNO this is pin #2 or pin #3. Each chipset has
different interrupt pins!

#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 2

Frequency
You can dial in the frequency you want the radio to communicate on, such as 915.0, 434.0
or 868.0 or any number really. Different countries/ITU Zones have different ISM bands so
make sure you're using those or if you are licensed, those frequencies you may use

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 53 of 61

You can then instantiate the radio object with our custom pin numbers.

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

Setup
We begin by setting up the serial console and hard-resetting the Radio

void setup()
{
 pinMode(LED, OUTPUT);
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial); // wait until serial console is open, remove if not tethered to computer
 Serial.begin(9600);
 delay(100);
 Serial.println("Arduino LoRa RX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

Remove the while (!Serial); line if you are not tethering to a computer, as it will cause the
Arduino to halt until a USB connection is made!

Initializing Radio

The library gets initialized with a call to init(). Once initialized, you can set the frequency.
You can also configure the output power level, the number ranges from 5 to 23. Start with
the highest power level (23) and then scale down as necessary

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 54 of 61

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);

Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a packet with
"Hello World #" and an incrementing packet number

void loop()
{
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!
 Serial.println("Transmitting..."); // Send a message to rf95_server

 char radiopacket[20] = "Hello World # ";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);
 radiopacket[19] = 0;

 Serial.println("Sending..."); delay(10);
 rf95.send((uint8_t *)radiopacket, 20);

 Serial.println("Waiting for packet to complete..."); delay(10);
 rf95.waitPacketSent();

Its pretty simple, the delay does the waiting, you can replace that with low power sleep
code. Then it generates the packet and appends a number that increases every tx. Then it
simply calls send to transmit the data, and passes in the array of data and the length of the
data.

Note that this does not any addressing or subnetworking - if you want to make sure
the packet goes to a particular radio, you may have to add an identifier/address byte on
your own!

Then you call waitPacketSent() to wait until the radio is done transmitting. You will not get
an automatic acknowledgement, from the other radio unless it knows to send back a
packet. Think of it like the 'UDP' of radio - the data is sent, but its not certain it was
received! Also, there will not be any automatic retries.

Receiver Code

The Receiver has the same exact setup code, but the loop is different

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 55 of 61

void loop()
{
 if (rf95.available())
 {
 // Should be a message for us now
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))
 {
 digitalWrite(LED, HIGH);
 RH_RF95::printBuffer("Received: ", buf, len);
 Serial.print("Got: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);

Instead of transmitting, it is constantly checking if there's any data packets that have been
received. available() will return true if a packet with proper error-correction was received. If
so, the receiver prints it out in hex and also as a 'character string'

It also prints out the RSSI which is the receiver signal strength indicator. This number will
range from about -15 to about -100. The larger the number (-15 being the highest you'll
likely see) the stronger the signal.

Once done it will automatically reply, which is a way for the radios to know that there was
an acknowledgement

// Send a reply
 uint8_t data[] = "And hello back to you";
 rf95.send(data, sizeof(data));
 rf95.waitPacketSent();
 Serial.println("Sent a reply");

It simply sends back a string and waits till the reply is completely sent

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 56 of 61

Downloads

Datasheets & Files
SX127x Datasheet (http://adafru.it/oBm)- The RFM9X LoRa radio chip itself
SX1231 Datasheet (http://adafru.it/mCv) - The RFM69 radio chip itself
RFM69HCW datasheet (http://adafru.it/mCu)- contains the SX1231 datasheet plus
details about the module (http://adafru.it/mFX)
RFM9X (http://adafru.it/mFX) - The radio module, which contains the SX1272 chipset
FCC Test Report (http://adafru.it/r6d)
EagleCAD PCB files on GitHub (http://adafru.it/oem)
Fritzing objects in the Adafruit Fritzing library (http://adafru.it/c7M)

Schematic
RFM69 and RFM9X have the same pinout so the same schematic is used

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 57 of 61

https://cdn-shop.adafruit.com/product-files/3179/sx1276_77_78_79.pdf
https://cdn-shop.adafruit.com/product-files/3076/sx1231.pdf
https://cdn-shop.adafruit.com/product-files/3076/RFM69HCW-V1.1.pdf
https://cdn-learn.adafruit.com/assets/assets/000/031/659/original/RFM95_96_97_98W.pdf?1460518717
https://cdn-learn.adafruit.com/assets/assets/000/031/659/original/RFM95_96_97_98W.pdf?1460518717
https://cdn-shop.adafruit.com/product-files/3070/p3070p3076_RFM69HCW-915S2-FCC.pdf
https://github.com/adafruit/Adafruit-RFM-LoRa-Radio-Breakout-PCB
https://github.com/adafruit/Fritzing-Library/

Fabrication Print
RFM69 and RFM9X have the same layout so the same board is used

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 58 of 61

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 59 of 61

Radio Range F.A.Q.
Which gives better range, LoRa or RFM69?

All other things being equal (antenna, power output, location) you will get better range with
LoRa than with RFM69 modules. We've found 50% to 100% range improvement is
common.

What ranges can I expect for RFM69 radios?

The RFM69 radios have a range of approx. 500 meters line of sight with tuned uni-
directional antennas. Depending on obstructions, frequency, antenna and power output,
you will get lower ranges - especially if you are not line of sight.

What ranges can I expect for RFM9X LoRa radios?

The RFM9x radios have a range of up to 2 km line of sight with tuned uni-directional
antennas. Depending on obstructions, frequency, antenna and power output, you will get
lower ranges - especially if you are not line of sight.

I don't seem to be getting the range advetised! Is my module broken?

Your module is probably not broken. Radio range is dependant on a lot of things and all
must be attended to to make sure you get the best performance!

1. Tuned antenna for your frequency - getting a well tuned antenna is incredibly
important. Your antenna must be tuned for the exact frequency you are using

2. Matching frequency - make sure all modules are on the same exact frequency
3. Matching settings - all radios must have the same settings so they can communicate
4. Directional vs non-directional antennas - for the best range, directional antennas like

Yagi will direct your energy in one path instead of all around
5. Good power supply - a nice steady power supply will keep your transmissions clean

and strong
6. Max power settings on the radios - they can be set for higher/lower power! Don't

forget to set them to max.
7. Line of sight - No obstructions, walls, trees, towers, buildings, mountains, etc can be

in the way of your radio path. Likewise, outdoors is way better than indoors because
its very hard to bounce radio paths around a building

8. Radio transmission speed - trying to transmit more data faster will be hard. Go for
small packets, with lots of retransmissions. Lowering the baud rate on the radio (see

© Adafruit Industries https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-
lora-packet-padio-breakouts

Page 60 of 61

the libraries for how to do this) will give you better reliability

How do I pick/design the right antenna?

Various antennas will cost diferent amounts and give you different directional gain. In
general, spending a lot on a large fixed antenna can give you better power transfer if the
antenna is well tuned. For most simple uses, a wire works pretty well

The ARRL antena book is recommended if you want to learn how to do the modeling and
analysis (http://adafru.it/sdN)

But nothing beats actual tests in your environment!

© Adafruit Industries Last Updated: 2017-04-03 04:21:11 AM UTC Page 61 of 61

https://www.arrl.org/shop/Antennas/

	Guide Contents
	Overview
	Pinouts
	Power Pins
	SPI Logic pins:
	Radio GPIO
	Antenna Connection
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Antenna Options
	Wire Antenna

	uFL Connector
	SMA Edge-Mount Connector
	Wiring
	Using the RFM69 Radio
	"Raw" vs Packetized
	Arduino Libraries
	RadioHead Library example

	Basic RX & TX example
	Basic Transmitter example code
	Basic receiver example code
	Radio Freq. Config
	Configuring Radio Pinout
	Setup
	Initializing Radio
	Basic Transmission Code
	Basic Receiver Code

	Basic Receiver/Transmitter Demo w/OLED
	Addressed RX and TX Demo
	RFM9X Test
	Arduino Library
	RadioHead RFM9x Library example

	Basic RX & TX example
	Transmitter example code
	Receiver example code

	Radio Pinout
	Frequency
	Setup
	Initializing Radio
	Transmission Code
	Receiver Code

	Downloads
	Datasheets & Files
	Schematic
	Fabrication Print
	Radio Range F.A.Q.

