

 Interface Testing on iMX Developer’s Kits
Copyright 2017 © Embedded Artists AB

Interface Testing
on

iMX Developer’s Kits

Interface Testing on iMX Developer’s Kits Page 2

Copyright 2017 © Embedded Artists AB Rev C

Embedded Artists AB
Davidshallsgatan 16
SE-211 45 Malmö
Sweden

http://www.EmbeddedArtists.com

Copyright 2017 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

http://www.embeddedartists.com/

Interface Testing on iMX Developer’s Kits Page 3

Copyright 2017 © Embedded Artists AB Rev C

Table of Contents
1 Document Revision History 5

2 Introduction ... 6

2.1 Conventions .. 6

3 Test Tools .. 7

3.1 Introduction .. 7

3.2 Requirements ... 7

3.2.1 Own build .. 7

4 Tests .. 8

4.1 eMMC ... 8

4.1.1 U-boot.. 8

4.1.2 Linux .. 9

4.2 Network ... 10

4.2.1 U-boot.. 10

4.2.2 Linux .. 11

4.3 USB Host ... 13

4.3.1 U-boot.. 13

4.3.2 Linux .. 13

4.4 MMC and uSD Cards .. 15

4.4.1 U-boot.. 15

4.4.2 Linux .. 16

4.5 SATA ... 17

4.5.1 U-boot.. 17

4.5.2 Linux .. 17

4.6 GPIO .. 19

4.6.1 U-boot.. 19

4.6.2 Linux .. 19

4.7 I2C .. 20

4.7.1 U-boot.. 20

4.7.2 Linux .. 21

4.8 UART ... 23

4.8.1 U-boot.. 23

4.8.2 Linux .. 23

4.9 PCI ... 25

4.9.1 U-boot.. 25

4.9.2 Linux .. 25

4.10 CAN ... 26

4.10.1 U-boot.. 26

4.10.2 Linux .. 26

4.11 Audio ... 28

4.11.1 U-boot.. 28

4.11.2 Linux .. 28

Interface Testing on iMX Developer’s Kits Page 4

Copyright 2017 © Embedded Artists AB Rev C

4.12 Display Output .. 30

4.12.1 U-boot.. 30

4.12.2 Linux .. 31

4.13 Touch... 34

4.13.1 U-boot.. 34

4.13.2 Linux .. 35

4.14 QSPI ... 36

4.14.1 U-boot.. 36

4.14.2 Linux .. 37

Interface Testing on iMX Developer’s Kits Page 5

Copyright 2017 © Embedded Artists AB Rev C

1 Document Revision History
Revision Date Description

A 2015-11-27 First release

B 2016-11-16 Added section about QSPI. Updated with new COM boards.

C 2017-04-25 Updated PCIe section with new information about i.MX 7

Interface Testing on iMX Developer’s Kits Page 6

Copyright 2017 © Embedded Artists AB Rev C

2 Introduction
This document describes commands to do basic testing of the peripheral interfaces on Embedded
Artists i.MX 6/7 based COM boards. Different CPUs have different capabilities so each section starts
with a table showing what is supported for each CPU.

Additional documentation you might need is.

 The Getting Started document for the board you are using.

 The Adding Displays to iMX Developer's Kits document about displays and how to use them

2.1 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text – is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the

development workstation, i.e., on the workstation where you edit,

configure and build Linux

This field illustrates user input on the target hardware, i.e.,

input given to the terminal attached to the COM Board

TThhiiss ffiieelldd iiss uusseedd ttoo iilllluussttrraattee eexxaammppllee ccooddee oorr eexxcceerrpptt ffrroomm aa

ddooccuummeenntt..

Interface Testing on iMX Developer’s Kits Page 7

Copyright 2017 © Embedded Artists AB Rev C

3 Test Tools
3.1 Introduction

After following the instructions in the Getting Started document it is possible to boot into the u-boot or
Linux, but how can the different peripheral interfaces available on the iMX Developer’s Kits be tested?

This document aims to give short commands to verify the presence and test the functionality of each
peripheral interface.

3.2 Requirements

Each test will describe what it requires in the form of cables or other hardware.

The software on the COM Board should be the core-image-base image built with frame buffer

support and with the needed packages. It is available as a part of the manufacturing tool package on
the Embedded Artists iMX Related Resources page. Make sure to use the latest version.

To run tests the board must be booted and a terminal program must be used on a host computer to
interact with the board.

3.2.1 Own build

The prepared build comes configured with all required packages. To add the packages to another
build, add the following lines to the conf/local.conf file:

IIMMAAGGEE__IINNSSTTAALLLL__aappppeenndd == "" \\

 ii22cc--ttoooollss--mmiisscc \\

 ii22cc--ttoooollss \\

 ppcciiuuttiillss \\

 ccaann--uuttiillss \\

 iipprroouuttee22 \\

 eevvtteesstt \\

 aallssaa--uuttiillss \\

 ffbbiiddaa \\

""

http://imx.embeddedartists.com/

Interface Testing on iMX Developer’s Kits Page 8

Copyright 2017 © Embedded Artists AB Rev C

4 Tests
4.1 eMMC

The COM Boards have eMMC flash that is used to persistently store everything needed to boot into
Linux.

COM board eMMC device in u-boot eMMC device in Linux

iMX6 SoloX COM mmc dev 1 /dev/mmcblk2

iMX6 Quad COM mmc dev 2 /dev/mmcblk3

iMX6 DualLite COM mmc dev 2 /dev/mmcblk3

iMX6 UltraLite COM mmc dev 1 /dev/mmcblk1

iMX7 Dual COM mmc dev 1 /dev/mmcblk2

iMX7 Dual uCOM mmc dev 1 /dev/mmcblk2

No extra hardware needed for this test.

4.1.1 U-boot

One of the roles of the u-boot is to write new bootloader(s), Linux kernel and file systems to eMMC. To
accomplish this there are a set of u-boot commands available:

=> mmc

mmc - MMC sub system

Usage:

mmc read addr blk# cnt

mmc write addr blk# cnt

mmc erase blk# cnt

mmc rescan

mmc part - lists available partition on current mmc device

mmc dev [dev] [part] - show or set current mmc device [partition]

mmc list - lists available devices

mmc bootbus dev boot_bus_width reset_boot_bus_width boot_mode

 - Set the BOOT_BUS_WIDTH field of the specified device

mmc bootpart-resize <dev> <boot part size MB> <RPMB part size MB>

 - Change sizes of boot and RPMB partitions of specified device

mmc partconf dev boot_ack boot_partition partition_access

 - Change the bits of the PARTITION_CONFIG field of the specified

device

mmc rst-function dev value

 - Change the RST_n_FUNCTION field of the specified device

 WARNING: This is a write-once field and 0 / 1 / 2 are the only

valid values.

mmc setdsr - set DSR register value

Take care when using them as they will potentially corrupt the system!

Interface Testing on iMX Developer’s Kits Page 9

Copyright 2017 © Embedded Artists AB Rev C

A couple of safe commands (shown for the iMX6 UltraLite COM board):

=> mmc dev 1

mmc1(part 0) is current device

=> mmcinfo

Device: FSL_SDHC

Manufacturer ID: fe

OEM: 14e

Name: MMC04

Tran Speed: 52000000

Rd Block Len: 512

MMC version 4.41

High Capacity: Yes

Capacity: 3.5 GiB

Bus Width: 8-bit

=> mmc part

Partition Map for MMC device 1 -- Partition Type: DOS

Part Start Sector Num Sectors UUID Type

 1 8192 16384 00000000-01 0c

 2 24576 7364608 00000000-02 83

4.1.2 Linux

As Linux boots from the eMMC it is already tested when you log in.

To see available disk space:

df –h

Filesystem Size Used Available Use% Mounted on

/dev/root 3.4G 65.2M 3.2G 2% /

devtmpfs 340.0M 0 340.0M 0% /dev

tmpfs 500.1M 216.0K 499.9M 0% /run

tmpfs 500.1M 76.0K 500.1M 0% /var/volatile

Create a file

echo Hello World > greeting

Show the content of the file

cat greeting

Hello World

To list files

ls –la

drwxr-xr-x 2 root root 1024 Sep 23 15:25 .

drwxr-xr-x 3 root root 1024 Sep 23 14:52 ..

-rw-r--r-- 1 root root 12 Sep 23 15:25 greeting

Interface Testing on iMX Developer’s Kits Page 10

Copyright 2017 © Embedded Artists AB Rev C

4.2 Network

The COM Carrier Board has two Gigabit Ethernet connectors. Some CPUs only support one Ethernet
interface as shown in the table below. The primary Ethernet connector (the only one accessible in the
u-boot) is marked in the table below as “left” or “right”. Left means the one closest to the HDMI
connector.

COM board Ethernet interfaces in u-boot Ethernet interfaces in Linux

iMX6 SoloX COM 1 (left) 2 (left)

iMX6 Quad COM 1 (left) 1 (left)

iMX6 DualLite COM 1 (left) 1 (left)

iMX6 UltraLite COM 1 (right) 2 (right)

iMX7 Dual COM 1 (left) 1 (left)

iMX7 Dual uCOM 1 (left) 1 (left)

This test requires one or two network cables, a network with a DHCP server and access to Internet.
The examples assume that the network is 192.168.5.0/255.255.255.255. Replace the IP addresses
below to match the network that the board is connected to.

4.2.1 U-boot

The u-boot has basic network functionality but only for the first interface so to test network connectivity
use the Ethernet connector as indicated in the table above.

Use the ping command to test the network. It only handles IP addresses, i.e. no host names. It also

requires the ipaddr variable to have the current IP address.

=> setenv ipaddr 192.168.5.7

=> ping 192.168.5.22

Using FEC0 device

host 192.168.5.22 is alive

Interface Testing on iMX Developer’s Kits Page 11

Copyright 2017 © Embedded Artists AB Rev C

4.2.2 Linux

The Linux image has full support for both Ethernet ports and while booting it will initialize the first one
(eth0). To see the status of the network interface(s):

ifconfig

eth0 Link encap:Ethernet HWaddr 00:1A:F1:01:9B:E7

 inet addr:192.168.5.71 Bcast:192.168.5.255

mask:255.255.255.0

 inet6 addr: fe80::21a:f1ff:fe01:9be7/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:27 errors:0 dropped:0 overruns:0 frame:0

 TX packets:29 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:2624 (2.5 KiB) TX bytes:5643 (5.5 KiB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

If the CPU supports a second interface (eth1), then it can be started with:

ifup eth1

fec 21b4000.ethernet eth1: Freescale FEC PHY driver [Generic PHY]

(mii_bus:phy_addr=2188000.ethernet:02, irq=-1)

IPv6: ADDRCONF(NETDEV_UP): eth1: link is not ready

udhcpc (v1.22.1) started

Sending discover...

Sending discover...

libphy: 2188000.ethernet:02 - Link is Up - 1000/Full

IPv6: ADDRCONF(NETDEV_CHANGE): eth1: link becomes ready

Sending discover...

Sending select for 192.168.5.72...

Lease of 192.168.5.72 obtained, lease time 691200

/etc/udhcpc.d/50default: Adding DNS 192.168.5.2

As can be seen above the interface is detected and DHCP is used to get an IP address.

One way to test the network is with the ping program. Unlike the u-boot version the Linux version

handles host names as well (use Ctrl-C to end the program):

ping www.sunet.se

PING www.sunet.se (192.36.171.231): 56 data bytes

64 bytes from 192.36.171.231: seq=0 ttl=56 time=16.412 ms

64 bytes from 192.36.171.231: seq=1 ttl=56 time=18.279 ms

64 bytes from 192.36.171.231: seq=2 ttl=56 time=19.125 ms

64 bytes from 192.36.171.231: seq=3 ttl=56 time=17.355 ms

^C

--- www.sunet.se ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max = 16.412/17.792/19.125 ms

Interface Testing on iMX Developer’s Kits Page 12

Copyright 2017 © Embedded Artists AB Rev C

The ping command uses the first interface (eth0) by default. To specify that it should use another

interface use the –I option:

ping –I eth1 www.sunet.se

When using the second interface (eth1) it is possible that the ping program fails. This is most likely

because the routing table does not handle the interface. To fix this first look at the current routing table:

route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

default 192.168.5.1 0.0.0.0 UG 0 0 0 eth0

192.168.5.0 * 255.255.255.0 U 0 0 0 eth0

192.168.5.0 * 255.255.255.0 U 0 0 0 eth1

The default route is only for eth0, so remove it and add a default route for eth1 instead:

route del default

route add default gw 192.168.5.1 eth1

After this change eth1 will work instead.

Interface Testing on iMX Developer’s Kits Page 13

Copyright 2017 © Embedded Artists AB Rev C

4.3 USB Host

The COM Carrier Board has two USB type A sockets which can be used on all CPUs.

The tests require a USB Memory Stick.

4.3.1 U-boot

The u-boot has USB support for reading/writing USB memories. Connect a USB memory stick to one
of the two ports and then issue the following commands:

=> usb start

starting USB...

USB0: Port not available.

USB1: USB EHCI 1.00

scanning bus 1 for devices... 4 USB Device(s) found

 scanning usb for storage devices... 2 Storage Device(s) found

 scanning usb for ethernet devices... 0 Ethernet Device(s) found

=> usb storage

 Device 0: Vendor: USB Rev: 1100 Prod: Flash Disk

 Type: Hard Disk

 Capacity: 1912.0 MB = 1.8 GB (3915776 x 512)

 Device 1: Vendor: Kingston Rev: 1.00 Prod: DataTraveler G2

 Type: Removable Hard Disk

 Capacity: 15259.7 MB = 14.9 GB (31252024 x 512)

=> fatls usb 0

 24055271 core-image-base-imx6sxea-com.rootfs.tar.bz2

 79691776 core-image-base-imx6sxea-com.rootfs.ext3

 316520 u-boot-imx6sxea-com.img

 6084744 zimage-imx6sxea-com

 42732 imx6sxea-com-kit.dtb

5 file(s), 0 dir(s)

4.3.2 Linux

Linux has support for a wide range of USB devices including mouse, keyboard, memory sticks, hubs
etc.

It is possible to see which USB devices are currently connected:

lsusb

Bus 001 Device 004: ID 0951:1624 Kingston Technology DataTraveler G2

Bus 001 Device 003: ID 8087:07dc Intel Corp.

Bus 001 Device 002: ID 0424:2513 Standard Microsystems Corp. 2.0 Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Interface Testing on iMX Developer’s Kits Page 14

Copyright 2017 © Embedded Artists AB Rev C

When a new USB device is connected some status messages will be printed in the console. The
following comes when inserting a USB memory stick:

usb 1-1.3: new high-speed USB device number 5 using ci_hdrc

usb-storage 1-1.3:1.0: USB Mass Storage device detected

scsi1 : usb-storage 1-1.3:1.0

scsi 1:0:0:0: Direct-Access Kingston DataTraveler G2 1.00 PQ:

0 ANSI: 2

sd 1:0:0:0: [sda] 31252024 512-byte logical blocks: (16.0 GB/14.9

GiB)

sd 1:0:0:0: [sda] Write Protect is off

sd 1:0:0:0: [sda] Incomplete mode parameter data

sd 1:0:0:0: [sda] Assuming drive cache: write through

sd 1:0:0:0: [sda] Incomplete mode parameter data

sd 1:0:0:0: [sda] Assuming drive cache: write through

 sda: sda1

sd 1:0:0:0: [sda] Incomplete mode parameter data

sd 1:0:0:0: [sda] Assuming drive cache: write through

sd 1:0:0:0: [sda] Attached SCSI removable disk

The interesting part above is the “sda: sda1” which indicates which device (sda1) that the USB

memory stick is assigned to. Section 4.5.2 describes an alternative way to find the device name.

To be able to access the memory stick it must first be mounted:

mkdir /mnt/usb

mount /dev/sda1 /mnt/usb

The memory stick is now available in the /mnt/usb directory on the file system:

ls /mnt/usb/

core-image-base-imx6sxea-com.rootfs.ext3

core-image-base-imx6sxea-com.rootfs.tar.bz2

imx6sxea-com-kit.dtb

u-boot-imx6sxea-com.img

zImage-imx6sxea-com

Before physically removing the memory stick from the COM Carrier Board, it should be unmounted to
make sure that all pending write operations are committed to prevent data loss:

umount /mnt/usb

There are many different USB devices and the level of support varies with the kind of device.
Keyboards will work without any extra work – just plug in and start typing. A mouse will work but
without a graphical desktop it will be difficult to use it.

Interface Testing on iMX Developer’s Kits Page 15

Copyright 2017 © Embedded Artists AB Rev C

4.4 MMC and uSD Cards

The COM Carrier Board has two slots for external memory cards – a slot for the uSD card on the top of
the carrier board and a slot for the full size MMC cards on the bottom side.

Note that only one of the slots can be used at a time.

COM board MMC/uSD device in u-boot MMC/uSD device in Linux

iMX6 SoloX COM mmc dev 0 /dev/mmcblk1

iMX6 Quad COM mmc dev 0 /dev/mmcblk1

iMX6 DualLite COM mmc dev 0 /dev/mmcblk1

iMX6 UltraLite COM mmc dev 0 /dev/mmcblk0

iMX7 Dual COM mmc dev 0 /dev/mmcblk0

iMX7 Dual uCOM mmc dev 0 /dev/mmcblk0

A uSD or a full size memory card is required to run the tests.

4.4.1 U-boot

The u-boot has support for reading/writing memory cards.

To show information about the memory card it must first be selected with the “mmc dev” command.

=> mmc rescan

=> mmc dev 0

=> mmc info

Device: FSL_SDHC

Manufacturer ID: 9

OEM: 4150

Name: AF UD

Tran Speed: 50000000

Rd Block Len: 512

SD version 2.0

High Capacity: No

Capacity: 981.5 MiB

Bus Width: 4-bit

To list the content of the sdcard:

=> fatls mmc 0

 1491 btngraph.gif

 1396 btnlast.jpg

 1266 btnminus.gif

 1049 btnnext.jpg

 1375 btnplus.gif

Interface Testing on iMX Developer’s Kits Page 16

Copyright 2017 © Embedded Artists AB Rev C

4.4.2 Linux

A new memory card will be detected automatically when it is inserted and a message like this one will
be printed in the console (example is for iMX6 UltraLite COM board so mmc number is 0):

mmc0: host does not support reading read-only switch. assuming

write-enable.

mmc0: new high speed SD card at address b368

mmcblk0: mmc1:b368 AF UD 981 MiB

 mmcblk0: p1

To use the memory card it must first be mounted:

mkdir /mnt/sdcard

mount /dev/mmcblk0p1 /mnt/sdcard

The card is now mounted:

df –h

Filesystem Size Used Available Use% Mounted on

/dev/root 3.4G 65.2M 3.2G 2% /

devtmpfs 340.0M 0 340.0M 0% /dev

tmpfs 500.1M 216.0K 499.9M 0% /run

tmpfs 500.1M 76.0K 500.1M 0% /var/volatile

/dev/mmcblk1p1 981.1M 3.8M 977.4M 0% /mnt/sdcard

To see the content:

ls /mnt/scard

DEFCXX.JS TXTPSET.XML digi4.gif metaserv.js

DEFIO01.JS TXTPSIOA.XML error.gif metaset.htm

DEFIO02.JS TXTPSIOD.XML excanvas.js metaset.js

DEFIO03.JS TXTPSIOS.XML g_hor1.jpg metasys.htm

As with the USB memory stick, don’t forget to unmount it before physically removing it from the COM
Carrier Board:

umount /mnt/scard

Interface Testing on iMX Developer’s Kits Page 17

Copyright 2017 © Embedded Artists AB Rev C

4.5 SATA

COM board SATA in u-boot SATA in Linux

iMX6 SoloX COM Not Supported by CPU Not Supported by CPU

iMX6 Quad COM Not Enabled Yes

iMX6 DualLite COM Not Supported by CPU Not Supported by CPU

iMX6 UltraLite COM Not Supported by CPU Not Supported by CPU

iMX7 Dual COM Not Supported by CPU Not Supported by CPU

iMX7 Dual uCOM Not Supported by CPU Not Supported by CPU

This test requires a SATA disk (can be SSD) and a cable to connect it to the Carrier Board.

4.5.1 U-boot

The u-boot can be (but is not in the default build) configured with SATA support.

4.5.2 Linux

A SATA disk may have many partitions and to see which devices have been assigned to the disk:

ls –l /dev/disk/by-id/

ata-ADATA_SP550_1F3520275635 -> ../../sda

ata-ADATA_SP550_1F3520275635-part1 -> ../../sda1

ata-ADATA_SP550_1F3520275635-part2 -> ../../sda2

…

The interesting lines above are starting with 'ata' and shows that the SATA disk’s two partitions are
available as sda1 and sda2.

To use one of the partitions it must first be mounted:

mkdir /mnt/sata

mount /dev/sda1 /mnt/sata

Interface Testing on iMX Developer’s Kits Page 18

Copyright 2017 © Embedded Artists AB Rev C

The card is now mounted:

df –h

Filesystem Size Used Available Use% Mounted on

/dev/root 73.5M 57.1M 12.3M 82% /

devtmpfs 340.0M 0 340.0M 0% /dev

tmpfs 500.1M 224.0K 499.9M 0% /run

tmpfs 500.1M 88.0K 500.1M 0% /var/volatile

/dev/sda1 28.8G 32.0K 28.8G 0% /mnt/sata

To see the content:

ls /mnt/sata

test_marker4.txt

As with the USB memory stick, don’t forget to unmount it before physically removing it from the COM
Carrier Board:

umount /mnt/sata

Interface Testing on iMX Developer’s Kits Page 19

Copyright 2017 © Embedded Artists AB Rev C

4.6 GPIO

All pins on the CPUs are used by the peripherals so there are no free pins to test. However, it is
possible to change the configuration in the device tree file and change the pin function to be a GPIO
instead of for example SPI pin.

4.6.1 U-boot

Not applicable.

4.6.2 Linux

Assuming that a pin (in this example GPIO6_IO13) is configured as GPIO in the device tree file and is
not already in used then it can be examined and manipulated from the command line in Linux.

The GPIO pins are controlled with special files in sysfs.

To use a pin it must first be configured as GPIO and to do that the pin's port and pin number must be
converted into a number with this formula:

Num = (Port - 1)*32 + Pin

So for GPIO6_IO13 the number is (6 - 1)*32 + 13 = 173.

To configure the pin:

echo 173 > /sys/class/gpio/export

If that is successful then a new folder should have been created (see gpio173 below):

ls /sys/class/gpio/

export gpiochip0 gpiochip160 gpiochip32 gpiochip96

gpio173 gpiochip128 gpiochip192 gpiochip64 unexport

A closer inspection of the exported GPIO:

ls /sys/class/gpio/gpio173/

active_low direction power uevent

device edge subsystem value

To configure the pin as an input and read the current value (0 or 1):

echo in > /sys/class/gpio/gpio173/direction

cat /sys/class/gpio/gpio173/value

0

To configure the pin as an output and set it high:

echo out > /sys/class/gpio/gpio173/direction

echo 1 > /sys/class/gpio/gpio173/value

Interface Testing on iMX Developer’s Kits Page 20

Copyright 2017 © Embedded Artists AB Rev C

4.7 I2C

Each CPU supports a number of I2C busses. The COM board design then either exposes all I2C
busses or imposes limits. The table below shows which busses is supported on each COM board and
the 7-bit addresses of the devices on each bus. Unused means that there are no devices on the bus.
The table below also lists the I2C channel name (A/B/C) on the COM Carrier Board.

COM board i2c-0
COM Carrier Board: I2C-A

i2c-1 i2c-2

iMX6 SoloX COM 08 1A 4D 55 56 Unused (I2C-B) Unused * (I2C-C)

iMX6 Quad COM 08 1A 4D 55 56 Unused * (I2C-C) Unused * (I2C-B)

iMX6 DualLite COM 08 1A 4D 55 56 Unused * (I2C-C) Unused * (I2C-B)

iMX6 UltraLite COM 08 1A 4D 55 56 Unused * (I2C-B) Not Supported

iMX7 Dual COM 08 1A 4D 55 56 Unused * (I2C-B) Unused * (I2C-C)

iMX7 Dual uCOM 08 1A 4D 55 56 Unused * (I2C-B) Unused (I2C-C)

*) The marked i2c busses are not enabled in the u-boot, only in Linux

Explanations to I2C addresses above:

 0x08 – PMIC on the COM Board

 0x1a – Audio Codec on the COM Carrier Board

 0x4d – AR1021 Touch Controller, typically on COM Display Adapter (or on COM Carrier
Board, rev A)

 0x55 – EEPROM on the COM Board

 0x56 – EEPROM, typically on COM Display Adapter (or on COM Carrier Board, rev A)

No extra hardware needed to run these tests.

4.7.1 U-boot

The u-boot has i2c commands:

=> i2c

i2c - I2C sub-system

Usage:
i2c bus [muxtype:muxaddr:muxchannel] - show I2C bus info

crc32 chip address[.0, .1, .2] count - compute CRC32 checksum

i2c dev [dev] - show or set current I2C bus

i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device

i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device

i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)

i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)

i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)

i2c probe [address] - test for and show device(s) on the I2C bus

i2c read chip address[.0, .1, .2] length memaddress - read to memory

i2c write memaddress chip address[.0, .1, .2] length - write memory to i2c

i2c reset - re-init the I2C Controller

i2c speed [speed] - show or set I2C bus speed

Interface Testing on iMX Developer’s Kits Page 21

Copyright 2017 © Embedded Artists AB Rev C

To see the available busses:

=> i2c bus

Bus 0: mxc0

Bus 1: mxc1

Bus 2: mxc2

Bus 0 is safe to use. The other busses are not initialized and may produce errors when probed. To list
all devices on bus 0:

=> i2c dev 0

Setting bus to 0

=> i2c probe

Valid chip addresses: 08 1A 4D 55 56

The scan found the following devices:

 0x08 – PMIC on the COM board

 0x1a – Audio Codec on the COM Carrier Board

 0x4d – AR1021 Touch Controller, typically on COM Display Adapter (or on COM Carrier
Board, rev A)

 0x55 – EEPROM on the COM Board

 0x56 – EEPROM, typically on COM Display Adapter (or on COM Carrier Board, rev A)

4.7.2 Linux

To see which I2C busses are available use either

ls /dev/i2c*

/dev/i2c-0 /dev/i2c-1 /dev/i2c-2

or

i2cdetect -l

i2c-0 i2c 21a0000.i2c I2C adapter

i2c-1 i2c 21a4000.i2c I2C adapter

i2c-2 i2c 21a8000.i2c I2C adapter

To scan for all devices on i2c-1:

i2cdetect –y 0

root@imx6sxea-com:~# i2cdetect -y 0

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- UU -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- UU -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- UU -- --

50: -- -- -- -- -- UU 56 -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

Interface Testing on iMX Developer’s Kits Page 22

Copyright 2017 © Embedded Artists AB Rev C

The scan above uses UU to indicate that a device was not probed as it was marked as being in use by
a driver. The address to device mapping is described in the u-boot section above.

Interface Testing on iMX Developer’s Kits Page 23

Copyright 2017 © Embedded Artists AB Rev C

4.8 UART

The COM Carrier Board has three UARTs:

COM board NXP Name Linux On COM Carrier Board

iMX6 SoloX COM UART1
UART2
UART5

/dev/ttymxc0
/dev/ttymxc1
/dev/ttymxc4

Pin list J35 (UART-A)
Pin list J15 (UART-B)
Pin list J16 (UART-C)

iMX6 Quad COM UART1
UART4
UART5

/dev/ttymxc0
/dev/ttymxc3
/dev/ttymxc4

Pin list J16 (UART-C)
Pin list J15 (UART-B)
Pin list J35 (UART-A)

iMX6 DualLite COM UART1
UART4
UART5

/dev/ttymxc0
/dev/ttymxc3
/dev/ttymxc4

Pin list J16 (UART-C)
Pin list J15 (UART-B)
Pin list J35 (UART-A)

iMX6 UltraLite COM UART1
UART2
UART3

/dev/ttymxc0
/dev/ttymxc1
/dev/ttymxc2

Pin list J35 (UART-A)
Pin list J15 (UART-B)
Pin list J16 (UART-C)

iMX7 Dual COM UART1
UART2
UART3

/dev/ttymxc0
/dev/ttymxc1
/dev/ttymxc2

Pin list J35 (UART-A)
Pin list J15 (UART-B)
Pin list J16 (UART-C)

iMX7 Dual uCOM UART1
UART2
UART3

/dev/ttymxc0
/dev/ttymxc1
/dev/ttymxc2

Pin list J35 (UART-A)
Pin list J15 (UART-B)
Pin list J16 (UART-C)

UART1 is used by the console so it is tested by connecting a terminal program to the port and then
boot into the u-boot.

Two jumper cables are needed to run these tests. For the iMX6 Quad and DualLite COM boards
connect as in the right image below. For all other COM boards connect as shown in the left image
below.

4.8.1 U-boot

No special tests to run in the u-boot. UART1 is used by the console so it gets tested automatically.

4.8.2 Linux

The examples below are for the iMX6 UltraLite COM board, so replace the devices according to the
CPU you are testing.

Interface Testing on iMX Developer’s Kits Page 24

Copyright 2017 © Embedded Artists AB Rev C

To see which UARTs are available:

ls /dev/ttymxc*

/dev/ttymxc0 /dev/ttymxc1 /dev/ttymxc2

The console uses /dev/ttymxc0, so it does not need further testing.

To test /dev/ttymxc1 and /dev/ttymxc2 cross-connect the RX and TX lines on the COM Carrier Board
as shown above.

After connecting, set them up with a baud rate of 115200, raw mode and no echoing:

stty -F /dev/ttymxc1 115200 raw -echo

stty -F /dev/ttymxc2 115200 raw -echo

To listen on /dev/ttymxc1 and send on /dev/ttymxc2:

cat /dev/ttymxc1 &

echo Hello World > /dev/ttymxc2

Hello World

The & in the first command above means that it will be executed in the background. Don’t forget to
stop the background process when you’re done with it by bringing it to the foreground and then
pressing Ctrl+C:

fg

cat /dev/ttymxc1

^C

Interface Testing on iMX Developer’s Kits Page 25

Copyright 2017 © Embedded Artists AB Rev C

4.9 PCI

COM board PCI in u-boot PCI in Linux

iMX6 SoloX COM No Yes

iMX6 Quad COM No Yes

iMX6 DualLite COM No Yes

iMX6 UltraLite COM Not Supported by CPU Not Supported by CPU

iMX7 Dual COM No Yes

iMX7 Dual uCOM No Yes

This test assumes that an Intel™ Dual Band Wireless-AC 7260 Plus Bluetooth
(http://www.intel.com/content/www/us/en/wireless-products/dual-band-wireless-ac-7260-
bluetooth.html) PCIe half mini card is inserted in the COM Carrier Board before booting into Linux

4.9.1 U-boot

Not applicable.

4.9.2 Linux

To see if the board is detected, use the lspci command:

lspci

00:00.0 PCI bridge: Device 16c3:abcd (rev 01)

01:00.0 Network controller: Intel Corporation Wireless 7260 (rev bb)

http://www.intel.com/content/www/us/en/wireless-products/dual-band-wireless-ac-7260-bluetooth.html
http://www.intel.com/content/www/us/en/wireless-products/dual-band-wireless-ac-7260-bluetooth.html

Interface Testing on iMX Developer’s Kits Page 26

Copyright 2017 © Embedded Artists AB Rev C

4.10 CAN

The CAN bus is available on all CPUs but only in Linux. There is no CAN support in the u-boot.

To run these tests the two can busses must be connected together. Use the cable that comes with the
Carrier Board. Twist together the yellow and blue wires (CANH). Twist together the orange and green
wires (CANL) as shown in the image below.

4.10.1 U-boot

Not applicable.

4.10.2 Linux

Make sure that both can0 and can1 are detected:

ip link show

...

2: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN mode DEFAULT

 group default qlen 10

 link/can

3: can1: <NOARP,ECHO> mtu 16 qdisc noop state DOWN mode DEFAULT

 group default qlen 10

 link/can

...

If the text <NOARP,ECHO> appears then the interface is down and must be brought up before it can
be used:

ip link set can0 up type can bitrate 125000

flexcan 2090000.can can0: writing ctrl=0x0e312005

ip link set can1 up type can bitrate 125000

flexcan 2094000.can can1: writing ctrl=0x0e312005

Interface Testing on iMX Developer’s Kits Page 27

Copyright 2017 © Embedded Artists AB Rev C

As the interfaces are now up, the status will have changed:

ip link show

...

2: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state

 UNKNOWN mode DEFAULT group default qlen 10

 link/can

3: can1: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state

 UNKNOWN mode DEFAULT group default qlen 10

 link/can

...

To test the CAN bus the two interfaces must be connected together as shown above.

The following example listens on can1 and sends on can0. Start by listening on the can1 interface

in the background:

candump can1 &

Now send a message on can0 and see what arrives on can1:

cansend can0 5A1#11.2233.44556677.88

 can1 5A1 [8] 11 22 33 44 55 66 77 88

The second line above is from the candump process and it shows that it has detected an 8 byte

message with id 5A1 being received by the can1 interface.

After completing the tests, terminate the background process with the fg command and Ctrl+C

fg

candump can1

^C

Interface Testing on iMX Developer’s Kits Page 28

Copyright 2017 © Embedded Artists AB Rev C

4.11 Audio

There is a headphone jack on the COM Carrier Board. Audio out is supported in Linux on all CPUs, but
not in the u-boot.

This test requires either headphones or speakers with a 3.5mm audio jack.

4.11.1 U-boot

Not applicable.

4.11.2 Linux

Use headphones in the jacket on the COM Carrier Board.

The alsa-utils package comes with a set of sample sound files available on the file system:

ls /usr/share/sounds/alsa/

Front_Center.wav Noise.wav Rear_Right.wav

Front_Left.wav Rear_Center.wav Side_Left.wav

Front_Right.wav Rear_Left.wav Side_Right.wav

The sound files can be played using the aplay command:

aplay /usr/share/sounds/alsa/Front_Left.wav

Note that even if the file is mono, it will be played as stereo.

Another way to test the audio is with the speaker-test application:

speaker-test -c2 -l2 -twav

The speaker-test application has a lot of options to play with, but in our example the options are –c2

for stereo, -l2 to play each sound twice and –twav for wav-file testing.

If there is no sound at all, it is most likely because the output is off or muted. To get a long list of all
mixer controls:

amixer

Simple mixer control 'Master',0

 Capabilities: pvolume

 Playback channels: Front Left - Front Right

 Limits: Playback 0 – 127

 Mono:

 Front Left: Playback 101 [80%] [-20.00dB]

 Front Right: Playback 101 [80%] [-20.00dB]

...

Simple mixer control 'Output Mixer HiFi',0

 Capabilities: pswitch pswitch-joined

 Playback channels: Mono

 Mono: Playback [off]

...

Interface Testing on iMX Developer’s Kits Page 29

Copyright 2017 © Embedded Artists AB Rev C

Or a shorter list of the names:

amixer controls

numid=2,iface=MIXER,name='Master Playback ZC Switch'

numid=1,iface=MIXER,name='Master Playback Volume'

numid=4,iface=MIXER,name='Line Capture Switch'

numid=5,iface=MIXER,name='Mic Boost Volume'

numid=6,iface=MIXER,name='Mic Capture Switch'

numid=8,iface=MIXER,name='ADC High Pass Filter Switch'

numid=3,iface=MIXER,name='Capture Volume'

numid=10,iface=MIXER,name='Playback Deemphasis Switch'

numid=11,iface=MIXER,name='Input Mux'

numid=14,iface=MIXER,name='Output Mixer HiFi Playback Switch'

numid=12,iface=MIXER,name='Output Mixer Line Bypass Switch'

numid=13,iface=MIXER,name='Output Mixer Mic Sidetone Switch'

numid=7,iface=MIXER,name='Sidetone Playback Volume'

numid=9,iface=MIXER,name='Store DC Offset Switch'

On the core-image-base build that you should be running, the only mixer setting that must be changed
is the “Output Mixer HiFi Playback Switch” which is turned off by default. To enable it look for the
“numid=xx” in the list above to find that it is “numid=14”. Enable with the following commands:

amixer -q cset numid=14 on

If for some reason there is still no sound, repeat the amixer command for all channels that have the

word “Playback” in the name.

Interface Testing on iMX Developer’s Kits Page 30

Copyright 2017 © Embedded Artists AB Rev C

4.12 Display Output

Each CPU supports a different set of display options. The table below shows what is supported and
which display is the default.

COM board
Parallel
RGB * LVDS0 LVDS1 HDMI MIPI DSI **

iMX6 SoloX COM Yes Yes (default) Not supported Not supported Not supported

iMX6 Quad COM Yes Yes Yes (default) Yes Yes

iMX6 DualLite COM Yes Yes Yes (default) Yes Yes

iMX6 UltraLite COM Yes (default) Not supported Not supported Not supported Not supported

iMX7 Dual COM Yes (default) Not supported Not supported Not supported Yes

iMX7 Dual uCOM Yes (default) Not supported Not supported Not supported Yes

*) The Parallel RGB interface is available through the use of a COM Display Adapter board

**) The MIPI DSI interface is not controlled by the eadisp command described below

The Display Solutions for COM Boards page describes the different interfaces, how to physically
connect a display and it has a list of some of the supported displays. There is also the Adding Displays
to iMX Developer's Kit document which has more in-depth descriptions of the commands below.

4.12.1 U-boot

The u-boot has support for the eadisp command to control which display interfaces should be

enabled and how they should be configured.

The u-boot is setup to show the DENX™ logo on the default display when booting but to see it the
display has to be configured correctly.

Run the eadisp command to see available options (output is for the iMX6 Quad COM board):

=> eadisp

Available display configurations:

 0) lvds0 hannstar:18:64998375,1024,768,220,40,21,7,60,...

 1) lvds1 hannstar:18:64998375,1024,768,220,40,21,7,60,...

 2) rgb Innolux-AT070TN:24:33336667,800,480,89,164,75,75,...

 3) rgb nhd-4.3-480272ef:24:9009009,480,272,2,2,2,2,41,...

 4) rgb nhd-5.0-800480tf:24:29232073,800,480,40,40,29,13,...

 5) rgb nhd-7.0-800480ef:24:29232073,800,480,40,40,29,13,...

 6) rgb umsh-8864:24:9061007,480,272,20,20,20,20,...

 7) rgb umsh-8596-30t:24:33264586,800,480,128,120,20,20,...

 8) rgb umsh-8596-33t:24:32917475,800,480,200,200,45,45,...

 9) rgb rogin-rx050a:24:32917475,800,480,200,200,45,45,...

 10) hdmi 1280x720M@60:m24:74161969,1280,720,220,110,20,5,...

 11) hdmi 1920x1080M@60:m24:148500148,1920,1080,148,88,36,...

 12) hdmi 640x480M@60:m24:25200342,640,480,48,16,33,10,...

 13) hdmi 720x480M@60:m24:27027027,720,480,60,16,30,9,62,...

Current Selection:

 enabled prefer configuration

 rgb: no no Innolux-AT070TN:24:33336667,...

 lvds0: no no hannstar:18:64998375,...

http://www.embeddedartists.com/com_display_solutions

Interface Testing on iMX Developer’s Kits Page 31

Copyright 2017 © Embedded Artists AB Rev C

 lvds1: no no hannstar:18:64998375,...

 hdmi: no no 1280x720M@60:m24:74161969,...

The command is described in detail in the Adding Displays to iMX Developer's Kit document. An
example enabling the Parallel RGB interface to use the UMSH-8864 display:

=> eadisp enable rgb

=> eadisp conf rgb 6

selecting rgb=umsh-8864

Current Selection:

 enabled prefer configuration

 rgb: yes no umsh-8864:24:9061007,...

 lvds0: no no hannstar:18:64998375,...

 lvds1: no no hannstar:18:64998375,...

 hdmi: no no 1280x720M@60:m24:74161969,...

To make the change, save the environment variables and reset the board:

=> saveenv

=> reset

The display should show the DENX™ logo.

4.12.2 Linux

Each display has its own framebuffer and to see the available framebuffers:

ls /dev/fb*

/dev/fb0 /dev/fb1 /dev/fb2 /dev/fb3 /dev/fb4 /dev/fb5

The number of framebuffers depends on the CPU and what was enabled by the eadisp command in
the u-boot.

The i.MX 6Quad and 6DualLite SoCs have support for virtual displays (called overlays) which will have
their own framebuffers so an iMX6 Quad COM board with LVDS0 and RGB enabled will have four
frame buffers:

ls /dev/fb*

/dev/fb0 /dev/fb1 /dev/fb2 /dev/fb3

The overlays are /dev/fb1 and /dev/fb3.

Interface Testing on iMX Developer’s Kits Page 32

Copyright 2017 © Embedded Artists AB Rev C

To see the resolution, bit depth etc for a framebuffer:

fbset -fb /dev/fb0

mode "800x480-49"

 # D: 33.501 MHz, H: 31.515 kHz, V: 49.243 Hz

 geometry 800 480 800 480 32

 timings 29850 89 164 75 75 10 10

 accel false

 rgba 8/16,8/8,8/0,0/0

endmode

The information above tells us the following interesting information:

 The resolution is 800x480 pixels

 Each pixel uses 32 bits, with 8 bits each for red, green and blue. No alpha information.

For a display with 16 bits per pixel and 1024x768 it will look like this instead:

fbset -fb /dev/fb1

mode "1024x768-60"

 # D: 65.003 MHz, H: 48.365 kHz, V: 60.006 Hz

 geometry 1024 768 1024 768 16

 timings 15384 220 40 21 7 60 10

 accel false

 rgba 5/11,6/5,5/0,0/0

endmode

Another way to see display information is to look at the files on sysfs:

ls /sys/class/graphics/fb4

bits_per_pixel fsl_disp_property state

blank mode stride

console modes subsystem

cursor name uevent

dev pan virtual_size

device power

fsl_disp_dev_property rotate

The files can be investigated further.

cat /sys/class/graphics/fb4/fsl_disp_dev_property

lcd

cat /sys/class/graphics/fb4/fsl_disp_property

1-layer-fb

The displays may have power saving options that turns them off after a while. To turn the display back
on, write a 0 to the blank control:

echo 0 > /sys/class/graphics/fb0/blank

To turn it off, write a 1 instead:

echo 1 > /sys/class/graphics/fb0/blank

Interface Testing on iMX Developer’s Kits Page 33

Copyright 2017 © Embedded Artists AB Rev C

A quick test is to send data directly to the framebuffer. Assuming the fbset command revealed a
800x480 display with 32 bit addressing, the following command fills the display with random data:

dd if=/dev/urandom of=/dev/fb0 bs=3200 count=480

The display can be cleared again by writing zeroes to it:

dd if=/dev/zero of=/dev/fb0 bs=3200 count=480

A more practical test is to display an image. Use a USB memory stick and mount it as described in
section 4.3.2 . To display an image use the following command:

fbi -T 2 –d /dev/fb0 /mnt/usbstick/*.png

Interface Testing on iMX Developer’s Kits Page 34

Copyright 2017 © Embedded Artists AB Rev C

4.13 Touch

The interface between the COM Display Adapter board and the COM Carrier Board have an I2C
channel for touch controllers either on the COM Display Adapter board (i.e. the AR1021) or on the
attached display itself. The LVDS interface on the COM Carrier Board includes an I2C channel as well.
HDMI and MIPI-DSI displays can have touch controllers but they will have to be connected using an
additional interface (e.g. USB) and that is not handled in this document as it is display specific.

The Display Solutions for COM Boards page describes the different interfaces, how to physically
connect a display and it has a list of some of the supported displays. There is also the Adding Displays
to iMX Developer's Kit document which has more in-depth descriptions of the commands below.

4.13.1 U-boot

The u-boot does not support touch events by itself but it is used to configure the touch interface(s) that

Linux will use. The eatouch command to control which display interfaces should be enabled and

how they should be configured.

Run the eatouch command to see available options (output is for the iMX6 Quad COM board):

eatouch

Available Touch Controllers:

 1) ar1021

 2) ilitek

 3) sitronix

 4) egalax

 5) ft5x06

Current Setup:

 rgb conn. lvds0 conn. lvds1 conn.

 ar1021 Disabled Disabled Disabled

 ilitek Disabled Disabled Disabled

 sitronix Disabled Disabled Disabled

 egalax Disabled Disabled Disabled

 ft5x06 Disabled Disabled Disabled

The eatouch command is described in detail in the Adding Displays to iMX Developer's Kit

document. To enable the AR1021 touch controller (used by a display with resistive touch panel
connected via the parallel RGB interface):

eatouch enable rgb 1

Current Setup:

 rgb conn. lvds0 conn. lvds1 conn.

 ar1021 Enabled 0x4d Disabled Disabled

 ilitek Disabled Disabled Disabled

 sitronix Disabled Disabled Disabled

 egalax Disabled Disabled Disabled

 ft5x06 Disabled Disabled Disabled

To make the change, save the environment variables and reset the board:

=> saveenv

=> reset

http://www.embeddedartists.com/com_display_solutions

Interface Testing on iMX Developer’s Kits Page 35

Copyright 2017 © Embedded Artists AB Rev C

4.13.2 Linux

To see which devices are available:

evtest

No device specified, trying to scan all of /dev/input/event*

Available devices:

/dev/input/event0: 20cc000.snvs-pwrkey

/dev/input/event1: ar1021 I2C Touchscreen

/dev/input/event2: EETI eGalax Touch Screen

In this case there are two touch controllers enabled: AR1021 and eGalax.

Use the evtest program again to test if a touch controller works:

evtest /dev/input/event1

Input driver version is 1.0.1

Input device ID: bus 0x18 vendor 0x0 product 0x0 version 0x0

Input device name: "ar1021 I2C Touchscreen"

Supported events:

 Event type 0 (EV_SYN)

 Event type 1 (EV_KEY)

 Event code 330 (BTN_TOUCH)

 Event type 3 (EV_ABS)

 Event code 0 (ABS_X)

 Value 2494

 Min 0

 Max 4095

 Event code 1 (ABS_Y)

 Value 499

 Min 0

 Max 4095

Properties:

Testing ... (interrupt to exit)
Event: time 1446835189.051908, type 3 (EV_ABS), code 0 (ABS_X), value 2791

Event: time 1446835189.051908, type 3 (EV_ABS), code 1 (ABS_Y), value 1918

Event: time 1446835189.051908, -------------- SYN_REPORT ------------

Event: time 1446835189.063241, type 1 (EV_KEY), code 330 (BTN_TOUCH), value 1

Event: time 1446835189.063241, -------------- SYN_REPORT ------------

Event: time 1446835189.069177, type 3 (EV_ABS), code 1 (ABS_Y), value 1919

Event: time 1446835189.069177, -------------- SYN_REPORT ------------

Event: time 1446835189.087452, type 3 (EV_ABS), code 0 (ABS_X), value 2792

Event: time 1446835189.087452, type 3 (EV_ABS), code 1 (ABS_Y), value 1917

…

The program will continue to listen for and display touch events until stopped with Ctrl+C.

Interface Testing on iMX Developer’s Kits Page 36

Copyright 2017 © Embedded Artists AB Rev C

4.14 QSPI

COM boards QSPI in u-boot QSPI in Linux

iMX6 SoloX COM Yes Yes

iMX6 Quad COM Not Supported by CPU Not Supported by CPU

iMX6 DualLite COM Not Supported by CPU Not Supported by CPU

iMX6 UltraLite COM Not Supported by CPU Not Supported by CPU

iMX7 Dual COM Yes Yes

iMX7 Dual uCOM Yes Yes

The iMX6 SoloX COM board has two 32Mbyte QSPI Flash memories.

The iMX7 Dual COM board has one 32MByte QSPI Flash memory.

The iMX7 Dual uCOM board has one 32MByte QSPI Flash memory on the uCOM Adapter Board.

4.14.1 U-boot

The u-boot has the sf command to handle SPI flash:

=> sf

sf - SPI flash sub-system

Usage:

sf probe [[bus:]cs] [hz] [mode] - init flash device on given SPI

 bus and chip select

sf read addr offset len - read `len' bytes starting at

 `offset' to memory at `addr'

sf write addr offset len - write `len' bytes from memory

 at `addr' to flash at `offset'

sf erase offset [+]len - erase `len' bytes from `offset'

 `+len' round up `len' to block

 size

sf update addr offset len - erase and write `len' bytes from

 memory at `addr' to flash at

 `offset'

The two memories can be seen with the probe command:

=> sf probe 0:0

SF: Detected N25Q256 with page size 256 Bytes, erase size 4 KiB,

total 32 MiB

=> sf probe 1:0

SF: Detected N25Q256 with page size 256 Bytes, erase size 4 KiB,

total 32 MiB

Interface Testing on iMX Developer’s Kits Page 37

Copyright 2017 © Embedded Artists AB Rev C

4.14.2 Linux

To see the QSPI flash (output from iMX6 SoloX COM board):

cat /proc/mtd

dev: size erasesize name

mtd0: 02000000 00010000 "21e4000.qspi"

mtd1: 02000000 00010000 "21e4000.qspi"

The table shows mtd0 and mtd1 but the corresponding block devices are mtdblock0 and mtdblock1. To
test the flash start by creating a test file with 16Kbyte random data:

dd if=/dev/urandom of=write.dat bs=1024 count=16

Write the random data to the block device:

time dd if=write.dat of=/dev/mtdblock0

32+0 records in

32+0 records out

real 0m0.074s

user 0m0.000s

sys 0m0.030s

Read back the data:

time dd if=/dev/mtdblock0 of=read.dat bs=1024 count=16

16+0 records in

16+0 records out

real 0m0.006s

user 0m0.000s

sys 0m0.000s

Compare the two files to make sure that nothing was lost:

diff read.dat write.dat

If the files are identical the diff command will not output anything. If there is a difference then it will look
like this:

diff read.dat write.dat

Files read.dat and write.dat differ

