SPSPFE3-0XG POWER SHELF

Key Features \& Benefits

- Two 3-Phase inputs, one AC inlet powers 3 power modules.
- Modules are hot-swap capable.
- Modules support I2C communication interface for control, programming and monitoring with PMBus ${ }^{\text {TM }}$ protocol.
- Modules implement the following protections: Overtemperature, output overvoltage and output overcurrent.
- RoHS Compliant.

SPSPFE3-0XG power-shelf solutions provide rectification, system management, and power distribution, while maintaining high reliability and offering flexibility for future expansion.

The power shelf can be configured with up to six hot-swap capable PFE3000-12-069RA AC/DC-DC power supplies that convert 3phase AC mains power into a main output of 12 VDC for powering intermediate bus architectures (IBA) in high performance and reliability servers, routers, and network switches.

The shelf can be mounted to a 19inch or 21 inch rack system using adaptor mounting brackets and is compatible with the Open Compute rack design.

SPSPFE3-OXG Power Shelf

1.ORDERING INFORMATION

ITEM NUMBER	INPUT CONFIGURATION
SPSPFE3-02G	3-phase, 400/480 VAC line to line input with Neutral line
SPSPFE3-03G	3-phase, 208 VAC line to line input without Neutral line

2.TECHNICAL DATA

SPSPFE3-0XG

Input	3-phase, 400/480 VAC Line to Line input with Neutral ${ }^{1}$ 3-phase, 208 VAC Line to Line input without Neutral ${ }^{2}$			
AC Inlet Configuration	3 power modules are powered from one AC inlet	$	$	$3+3$ or $5+1$ configuration
:---				
Redundant Configuration				
Rated Power 1				
Rated Power 2				
8utput Connection				
Auxiliary Output				
14400W ($5+1$ configuration $)^{3}$				
Communation $)^{3}$				

Notes: ${ }^{1}$ Power modules are connected Line to Neutral.
${ }^{2}$ Power modules are connected Line to Line.
${ }^{3}$ Rated Power is reduced as per current share accuracy characteristic. See PFE3000-12-069RA Datasheet
${ }^{4}$ Contact factory.

3. SAFETY WARNING

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies Bel Power Solutions Inc. from all claims arising from the handling or use of the goods. Persons handling the product(s) must have electronics training and observe good engineering practice standards.

Caution: Multiple power source. Disconnect all power cords before servicing.

4. REFERENCE DOCUMENTS

DOCUMENT NUMBER	DESCRIPTION
BCD.00297	PFE3000-12-069RA Datasheet
BCA.00070	PFE3000-12-069RA PMBus
BCM Communication Manual	
BCA.00177	Installation Instruction PFE3000-12-069RA
BCM.00339	SPSPFE3-0XG Communication Manual
PCA9547PW	Installation Instruction SPSPFE3-0XG

5. OVERVIEW

The SPSPFE3-0XG Power Shelf is a 1U height power shelf. It can be configured with up to six hot-swap capable PFE3000-12069RA AC/DC-DC power supplies that convert standard AC mains power into a main output of 12 VDC for powering intermediate bus architectures (IBA) in high performance and reliability servers, routers, and network switches.

SPSPFE3-OXG Power Shelf

The I2C communication is routed thru an I2C Multiplexer (NXP PCA9547PW). PSU Modules support I2C communication interface for control, programming and monitoring with PMBus ${ }^{\top M}$ protocol.

Figure 1 - SPSPFE3-02G Block Diagram

SPSPFE3-OXG Power Shelf

Figure 2 - SPSPFE3-03G Block Diagram

SPSPFE3-0XG Power Shelf

6. INPUT

PARAMETER	DESCRIPTION / CONDITION	$\begin{gathered} \text { SPSPFE3-02G } \\ (\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~N}, \stackrel{1}{(}) \end{gathered}$			$\begin{aligned} & \text { SPSPFE3-03G } \\ & \text { (L1, L2, L3, © }) \end{aligned}$			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Input Connector (J106, J107)								
AC Nominal Input Voltage			00 / 480			208		VAC
AC Input Voltage Ranges		346		480	200		240	VAC
Max Input Current	per line			17			30	Arms
Input Frequency		47	50/60	63	47	50/60	63	Hz

7. OUTPUT

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Main Output V_{1} (Output Bus bar)					
Nominal Output Voltage			12.3		VDC
Voltage Regulation		-5		+5	\% Vout nom
Nominal Output Power 1	$3+3$ configuration, $T_{a}<45^{\circ} \mathrm{C}$		8700		W
Derated Output Power 1	$3+3$ configuration, $T_{a}=55^{\circ} \mathrm{C}^{5}$		6525		W
Nominal Output Power 2	5+1 configuration, $T_{a}<45^{\circ} \mathrm{C}$		14400		W
Derated Output Power 2	5+1 configuration, $T_{a}=55^{\circ} \mathrm{C}^{5}$		10800		W
Nominal Output Current 1	$3+3$ configuration, $T_{a}<45^{\circ} \mathrm{C}$		707		ADC
Derated Output Current 1	$3+3$ configuration, $T_{a}=55^{\circ} \mathrm{C}^{5}$		530		ADC
Nominal Output Current 2	5+1 configuration, $T_{a}<45^{\circ} \mathrm{C}$		1171		ADC
Derated Output Current 2	5+1 configuration, $T_{a}=55^{\circ} \mathrm{C}^{5}$		878		ADC

Note: ${ }^{5}$ Linear derating at $T_{a}>45^{\circ} \mathrm{C}$, is based per module, see PFE3000-12-069RA datasheet

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Standy Output Vsb					
Output Voltage			12		VDC
Voltage Regulation		-5		+5	\% Vout nom
Output Power				60	W
Output Current				5	ADC

+1.866.513.2839

SPSPFE3-OXG Power Shelf

7.1 Protection (Per Module)

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Input Fuses ($\mathrm{L}+\mathrm{N}$)	Not user accessible, quick-acting (F)		25		A
OV Threshold V_{1}		13.6	14.2	14.8	VDC
OV Latch Off Time V_{1}				1	ms
OV Threshold $\mathrm{V}_{\text {SB }}$		13.3	13.9	14.5	VDC
OV Latch Off Time V VB				1	ms
Current limitation	$\begin{aligned} & \mathrm{Ta}<45^{\circ} \mathrm{C} \\ & \mathrm{Ta}=55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 248 \\ & 186 \end{aligned}$		$\begin{aligned} & 274 \\ & 212 \end{aligned}$	A
Current limit blanking time	Time to latch off when in over current	20	22	24	ms
Current limit during short time overload V_{1}	Maximum duration 20ms, per module	292	300	308	A
Max Short Circuit Current V_{1}	$V_{1}<3 \mathrm{~V}$, per module			$350{ }^{6}$	A
Short circuit latch off time	Time to latch off when in short circuit		10		ms
Current limitation $\mathrm{V}_{\text {SB }}$	Per module	6		9	A
Current limit blanking time	Time to hit hiccup when in over current			1	ms
Over temperature on critical points	Inlet Ambient Temperature PFC Primary Heatsink Temperature Secondary Sync Mosfet Temperature Secondary OR-ing Mosfet Temperature			$\begin{gathered} 60 \\ 80 \\ 115 \\ 125 \end{gathered}$	${ }^{\circ} \mathrm{C}$

Note: ${ }^{6}$ Limit doesn't include effects of main output capacitive discharge

7.2 Interface \& Control Signals

The PWOK_L open collector outputs of all modules are interconnected within the shelf and fed to the signal connector. The same applies to SMB_ALERT_L module and shelf signals. Sink current must not exceed 4 mA on each of these signals.

The internal INOK_L signal of individual modules are fed to microcontroller for modules synchronized AC startup. This allows the shelf to start up with load > 3000W during AC application. The microcontroller provide the INOK_L output signal.

A pull up resistor of $10 \mathrm{k} \Omega$ to 3.3 V within the shelf provides the high level voltage on PWOK_L, INOK_L and SMB_ALERT_L signals.

PWOK_L is low when there is at least one module in operation. INOK_L is low when there is at least one module supplied with correct input voltage.

ISHARE signal can be used when shelf are configured for redundant operation.
I2C Interface and Signal Connector (RJ45) Pin Out

RJ45 PIN OUTS	FUNCTION	DESCRIPTION
1^{7}	SCL	I2C clock signal line
2^{7}	SDA	I2C data signal line
3	RESET	Reset pin of I2C Mux
4	PWOK_L	Power OK signal output: active-low
5	INOK_L	Input OK signal: active-low
6	SMB_ALERT_L	SMB Alert signal output: active-high
7	ISHARE	V1 Current share bus
8	SGND	Signal ground

Note: ${ }^{7}$ External Pull-up resistor should be $2-5 \mathrm{k} \Omega$ to ensure SMBUS compliant signal rise times

SPSPFE3-OXG Power Shelf

7.3 I2C Communication

The PSU Modules are set to a fixed I2C Address (0x20). PMBus communication for the PSU Modules are described in more detail in BCA. 00070.

The I2C communication to the PSU Modules are routed thru an I2C Multiplexer. The I2C MUX Control Register MUX needs to be configured so that the I2C frames are routed to the correct PSU Module. Refer to the I2C MUX datasheet for additional information.

The I2C MUX Address is configurable (via DIP Switch) to allow parallel configuration of several shelves.
The I2C MUX has a RESET input which can be used to recover from an I2C bus fault. A logic low signal on this pin resets the I2C MUX. If not used, this pin should be left floating.

7.4 I2C Addressing (Shelf)

The shelf default MUX address is $0 x E E$ and Controller address is $0 \times 5 \mathrm{E}$.
When DIP switch (SW1) is in "ON" position means 0, "OFF" Position means 1.
DIP Switch Position

Position	Selected Unit
1	A0
2	A1
3	A2

DIP Switch Setting (SW1)

AO	A1	A2	MUX ADDRESS (IN HEX)
0	0	0	$0 x E 0$
1	0	0	$0 \times E 2$
0	1	0	$0 x E 4$
1	1	0	$0 x E 6$
0	0	1	$0 x E 8$
1	0	1	$0 x E A$
0	1	1	$0 x E C$
1	1	$0 x E E$	

Note: Communication Manual of shelf, see document BCA. 00178.
+1.866.513.2839

SPSPFE3-OXG Power Shelf

7.5 Control LEDs

Each PSU front-end module has 2 LEDs to indicate status condition. LED number one is green and indicates AC power is on or off, while LED number two is bi-colored: green and yellow, and indicates DC power presence or fault situations.

PARAMETER	DESCRIPTION / CONDITION	LED SIGNALING
AC LED	AC Line within range	Solid Green
	AC Line UV condition	Off
DC LED ${ }^{8}$	Normal Operation	Solid Green
	PSON_L High	Blinking Yellow (1:1)
	V_{1} or $V_{\text {SB }}$ out of regulation	
	Over temperature shutdown	
	Output over voltage shutdown (V_{1} or $V_{\text {SB }}$)	Solid Yellow
	Output under voltage shutdown (V_{1} or $V_{\text {SB }}$)	
	Output over current shutdown (V_{1} or $V_{\text {SB }}$)	
	Over temperature warning	Blinking Yellow/Green (2:1)
	Minor fan regulation error ($>5 \%$, <15\%)	Blinking Yellow/Green (1:1)

Note: ${ }^{8}$ The order of the criteria in the table corresponds to the testing precedence in the controller.
7.6 USB Connector Type B

The USB interface is NOT galvanic isolated and referenced to the +12V_RTN / SGND lines.
Preferably, use a battery operated laptop to avoid earth loop issue.
If a Desktop Computer is being used, there is a risk of generating earth loop currents, therefore USB Isolators should be used.

7.7 +12VSB Connector

+12 VSB output is capable of delivering 5A. The output is protected by a PTC (16R900GF from Littelfuse).

PIN OUTS	FUNCTION	DESCRIPTION
1	VSB_GND	$+12 V S B$ return
2	VSB	+12 VSB output
3	VSB_GND	$+12 V S B$ return
4	VSB	$+12 V S B$ output

+1.866.513.2839

SPSPFE3-OXG Power Shelf

8. SAFETY, REGULATORY AND EMC SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION	CRITERION
Agency Approvals (pending)	Approved to the latest revisions/amendments of the following standards: (pending) UL 60950-1 Second Edition CAN/CSA-C22.2 No. 60950-1-07 Second Edition IEC 60950-1:2005 EN 60950-1:2006	Approved by independent body (see CE Declaration) (pending)
Insulation	Input (L/N) to case (PE) Input (L / N) to output Output to case (PE)	Basic Reinforced Functional
Creepage / Clearance ($d_{\text {c }}$)	Primary (L/N) to protective earth (PE) Primary to secondary	
Electrical Strength Test	Input to case Input to output (tested by manufacturer only)	Min. 2121Vdc Min. 4242Vdc
Max. Leakage Current	AC input voltage of TBD VAC, line frequency of 50 Hz and a temperature of $25^{\circ} \mathrm{C}$.	TBD A
Conducted Emission	EN55022 / CISPR 22: $0.15 \ldots 30 \mathrm{MHz}$, QP and AVG	Class A
Radiated Emission	EN55022 / CISPR 22: $30 \mathrm{MHz} \ldots 1 \mathrm{GHz}$, QP	Class A
Harmonic Emissions (per module)	IEC61000-3-2, Vin = 115/230 VAC, $50 \mathrm{~Hz}, 100 \%$ Load	Class A
Acoustical Noise	Sound power statistical declaration (ISO 9296, ISO 7779, IS9295) @ 50\% load	60 dBA
AC Flicker	IEC / EN 61000-3-3, $\mathrm{d}_{\text {max }}<3.3 \%$	PASS
ESD Contact Discharge	IEC / EN 61000-4-2, $\pm 8 \mathrm{kV}, 25+25$ discharges per test point (metallic case, LEDs, connector body)	A
ESD Air Discharge	IEC / EN 61000-4-2, $\pm 15 \mathrm{kV}, 25+25$ discharges per test point (non-metallic user accessible surfaces)	A
Radiated Electromagnetic Field	IEC / EN 61000-4-3, $10 \mathrm{~V} / \mathrm{m}, 1 \mathrm{kHz} / 80 \%$ Amplitude Modulation, $1 \mu \mathrm{~s}$ Pulse Modulation, $10 \mathrm{kHz} . .2 \mathrm{GHz}$	A
Burst	IEC / EN 61000-4-4, level 3 AC port $\pm 2 \mathrm{kV}$, 1 minute DC port $\pm 1 \mathrm{kV}$, 1 minute	A
Surge	IEC / EN 61000-4-5 Line to earth: level $3, \pm 2 \mathrm{kV}$ Line to line: level $2, \pm 1 \mathrm{kV}$	A
RF Conducted Immunity	IEC/EN 61000-4-6, Level 3, 10 Vrms , CW, $0.1 \ldots 80 \mathrm{MHz}$	A
Voltage Dips and Interruptions (per module)	IEC/EN 61000-4-11 (per module) 1: Vi 230Volts, 100% Load, Dip 100\%, Duration 12ms 2: Vi 230Volts, 100% Load, Dip 100\%, Duration < 150 ms 3. Vi 230 Volts, 100% Load, Dip 100%, Duration > 150 ms	$\stackrel{A}{\text { V1: } \mathrm{B}, \mathrm{VSB}: \mathrm{A}}$

9. ENVIRONMENTAL SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Operating Temperature	@ full load, up to 4000 m : @ full load, up to 1800 m : @ 75% load, up to 1800 m :	$\begin{aligned} & -5 \\ & -5 \\ & -5 \end{aligned}$		$\begin{aligned} & +35 \\ & +45 \\ & +55 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Non-Operating Temperature		-40		+70	${ }^{\circ} \mathrm{C}$
Humidity	Operating: @ at $40^{\circ} \mathrm{C}$, non-condensing Non-Operating: non-condensing	$\begin{aligned} & 7 \\ & 5 \end{aligned}$		$\begin{aligned} & 93 \\ & 95 \end{aligned}$	\%RH
Altitude	Operating: Non-Operating:			$\begin{gathered} 4000 \\ 13000 \end{gathered}$	m
Shock	Operating: 11ms half-sine shocks in Z axis $10+$ ve, 10 -ve Non-Operating: 11ms half-sine shocks in Z axis $10+\mathrm{ve}, 10$-ve		$\begin{gathered} 5 \\ 30 \end{gathered}$		g
Vibration	Operating: 0.2 g rms random Non-Operating: 1 g rms random	$\begin{aligned} & 5 \\ & 2 \end{aligned}$		$\begin{aligned} & 500 \\ & 200 \end{aligned}$	Hz
Acoustic Noise Emissions	@ normal operation, and 50\% load sharing Fan speed			$\begin{gathered} 70 \\ 7000 \end{gathered}$	dBA rpm
Cooling	When equipped with operating PSUs			50	Pa

bel

SPSPFE3-0XG Power Shelf

10. MECHANICAL SPECIFICATIONS

PARAMETER	SPSPFE3-0XG
Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})$	$436 \times 46.5 \times 650 \mathrm{~mm}$ (overall : $436.5 \times 46.75 \times 740.75 \mathrm{~mm}$)
Weight (Shelf only)	12 kg
Weight (6 PSU installed)	27 kg

10.1 Connectors

SHELF	DESCRIPTION	TYPE	MANUFACTURER	MPN
SPSPFE3-02G	Input Connector	3 -phase input (2pcs)	Positronic Industries	SP5YYE48M0LN9A 1/AA-PA1067
	USB I2C Connector	USB - B type	Tyco	292304-1
	I2C Interface and Signal Connector	RJ45 (2pcs)	FCI Connectors	87180-088LF
	+12VSB output connector		Molex	39-30-0040
SPSPFE3-03G	Input Connector	3 -phase input (2pcs)	Positronic Industries	SP5YYE48M0LN9A 1/AA-PA1191
	USB I2C Connector	USB - B type	Tyco	292304-1
	I2C Interface and Signal Connector	RJ45 (2pcs)	FCI Connectors	87180-088LF
	+12VSB output connector		Molex	39-30-0040

Note: Ethernet connection is under development

Shelf SPSPFE3-02G

SP5YYE48MOLN9A1/AA-PA1067
SP5YYE1F0091/AA
+1.866.513.2839
bel

SPSPFE3-OXG Power Shelf

Shelf SPSPFE3-03G

SPSPFE3-OXG Front View

SPSPFE3-0XG Rear View

+1.866.513.2839

SPSPFE3-OXG Power Shelf

SPSPFE3-OXG Side View

SPSPFE3-OXG Top View

+1.866.513.2839
tech.support@psbel.com
belpowersolutions.com
BCD.00575_001

SPSPFE3-OXG Power Shelf

SPSPFE3-OXG Isometric View

Accessories

Blanking Panel Item Number: SPSPFE3BP-01G
Mounting "Ear" Brackets for 19" Rack - SPSPFE3-02GA
Mounting "Ear" Brackets for 21" Rack - SPSPFE3-02GB

SPSPFE3-OXG Power Shelf

11. REVISION HISTORY

REV	DESCRIPTION	PRODUCT VERSION	DATE	AUTHOR	
001	Initial Release of Datasheet	V001	V002		

For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.
a bel group

